PERFORMANCE STUDY OF A SOLAR REFRIGERATOR USING A MIXTURE OF PROPANE AND BUTANE WITH DIFFERENT RATIOS AS A REPLACEMENT TO R-134a

By

Marwan Yahya Basheer AL-Dayaflah

Supervisor

Dr. Mahmoud Hammad, Prof.

This Thesis was Submitted in Partial fulfillment of the Requirements for

the Master's Degree of Science in Mechanical Engineering

Faculty of Graduate Studies

The University of Jordan

December, 2008

This Thesis (Performance Study of a Solar Refrigerator Using a Mixture of Propane and Butane with Different Ratios as a Replacement to R-134a) was Successfully Defended and Approved on ...1.8/.111.2.9.9.2...

Examination Committee

Dr. Mahmoud Hammad (Supervisor) Prof. of Mechanical Engineering

Dr. Ali Badran (Member) Prof. of Mechanical Engineering

Dr. Hamzeh Duwairi (Member) Assoc. Prof. of Mechanical Engineering

Dr. Moh'd Al-Nimr (Member) Prof. of Mechanical Engineering (Jordan University of Science and Technology)

Signature

DEDICATION

То ---

My Late Father

My Dearest Mother

This is Just a Part of Gratitude

With

Love and Respect

ACKNOWLEDGEMENT

I want to express my deep thanks and gratitude to my supervisor Prof. Mahmoud Hammad for his support, encouragement and valuable guidance.

Also I am deeply grateful for the Energy Center staff and also for the Mechanical Engineering labs staff for their assistance and help during this work.

I would like to pass my deep thanks, respect and appreciation to my family for their support and care, especially my beloved mother.

TABLE OF CONTENTS

Subject]	Page No.	
Committee Dedication Acknowled Table of Co List of Tabl List of Figu List of App Nomenclatu Abstract	Decision gement ontents les ures endices ure		ii iii iv v ix x xiii xv xvii	
Chapter O	ne	INTRODUCTION		1
1.1 Forward	d			1
1.2 Refrige	rants and l	Environment		1
1.3 Alterna	tive Refrig	gerants		4
Chapter T	wo	LITERATURE SURVEY		7
Chapter T	hree	ALTERNATIVE REFRIGERANT		
		PROPERTIES		13
3.1 Introduc	ction			13
3.2 Thermo	dynamic I	Properties		14
3.2.1	Boiling p	point		15
3.2.2	Freezing	point		15
3.2.3	Critical t	emperature and pressure		15
3.2.4	Latent he	eat of vaporization		15
3.2.5	Evaporat	ting and condensing pressure		16

3.2.6	Coefficient of performance (COP)	16
3.2.7	Compressor discharge temperature	17
3.3 Physica	l properties	17
3.3.1	Specific heat	17
3.3.2	Thermal conductivity	17
3.3.3	Viscosity	18
3.3.4	Specific volume	18
3.3.5	Leak tendency and detection	18
3.4 Chemic	al properties	19
3.4.1	Miscibility with oil	19
3.4.2	Toxicity	19
3.4.3	Flammability	20
3.4.4	Water and solubility	21
3.4.5	Compatibility	21
3.5 Side pro	operties	22
3.5.1	Cost	22
3.5.2	Availability	22
3.5.3	Noise	22
3.6 Electric	vs. solar power	23
Chapter Fe	our EXPERIMENTAL WORK PROCEDURE	24
4.1 Introdue	ction	24
4.2 Refrige	rator Specifications	24
4.3 Measur	ing instruments	25
4.3.1	Temperature measurement	25
4.3.2	Pressure measurement	26

4.3.3	Power consumption measurement	26
4.3.4	Time measurement	26
4.3.5	Mass measurement	27
4.3.6	Solar system measurements	27
4.4 Hydroca	urbons Mixtures	32
4.5 Sizing th	ne solar power system	34
4.6 Work Pr	rocedure	35
4.6.1	Primary Work	35
4.6.2	Experimental Work	36
Chapter Fi	ve MATHEMATICAL ANALYSIS	38
5.1 Introduc	tion	38
5.2 Measure	ed data	39
5.3 Mathem	atical calculations	39
5.3.1	Enthalpy calculations	39
5.3.2	Refrigeration effect and capacity calculations	41
5.3.3	Refrigerant mass flow rate calculations	42
5.3.4	Compression work and power consumption calculated	ations 43
5.3.5	Coefficient of Performance (COP) calculations	43
5.4 Sample	calculation	44
Chapter Siz	RESULTS AND DISCUSSION	51
6.1 Introduc	tion	51
6.2 Cooling	rate	51
6.3 Power s	aving and consuming	57
6.4 Perform	ance parameters against Te, for R-134a and LPG	58
6.4.1	Coefficient of performance	59

www.manaraa.com

6.4.2	Refrigeration capacity	59
6.4.3	Power consumption	59
6.4.4	Refrigerant mass flow rate	60
6.5 Perform	nance parameters against Tc, for R-134a and LPG	60
6.5.1	Coefficient of performance	60
6.5.2	Refrigeration capacity	61
6.5.3	Power consumption	61
6.5.4	Refrigerant mass flow rate	62
6.6 Compa	rison of the performance of all mixtures with R-134a	79
6.6.1	Coefficient of performance	79
6.6.2	Refrigeration capacity	80
6.6.3	Power consumption	80
6.6.4	Refrigerant mass flow rate	81
Chapter Se	even CONCLUSIONS AND RECOMMENDATIO	DNS 86
7.1 Conclu	sions	86
7.2 Recom	mendations	89
REFEREN	ICES	90

7.2 Recommendations	89
REFERENCES	90
APPENDICES	92
Abstract in Arabic	114

LIST OF TABLES

TABLE No.	TITLE	PAGE
1.1	Properties, ODPs and GWPs for some refrigerants	3
3.1	ASHRAE Standard Designation of Refrigerant	13
3.2	Thermodynamic properties of refrigerants	14
3.3	Physical properties of R-134a, propane and butane	18
4.1	The used refrigerator specifications	25
4.2	Photovoltaic module specifications	28
4.3	Storage batteries specifications	28
4.4	Inverter specifications	29
4.5	Properties of the propane used	33
5.1	Components mole fraction for each mixture used	40
5.2	Sample of measured data	45
5.3	Sample of measured data for R-134a on solar power (day 2)	48
5.4	Results of sample data for R-134a on solar power (day 2)	49

LIST OF FIGURES

х

FIGURE No.	FIGURE CAPTION	
1.1	Typical vapor compression cycle	6
1.2	Detailed T-s diagram for typical vapor compression cycle	6
4.1	The experimental setup	30
4.2	Refrigerator interior	31
4.3	Photovoltaic modules	31
4.4	Storage batteries, charge controller and inverter	32
4.5	Coefficient of performance vs. LPG charge quantity	37
5.1	T-s diagram of vapor compression cycle	38
5.2	Efficiencies vs. time for R-134a using solar power (day 2) at Ta = $27 ^{\circ}\text{C}$	50
6.1	Temperature and solar intensity vs. time for R-134a using electrical and solar power (day 1)	52
6.2	Temperature and solar intensity vs. time for LPG using electrical and solar power (day 1)	53
6.3	Temperature and solar intensity vs. time for 50% propane & 50% butane using electrical and solar power (day 1)	54
6.4	Temperature and solar intensity vs. time for 70% propane & 30% butane using electrical and solar power (day 1)	55
6.5	Temperature and solar intensity vs. time for propane using electrical and solar power (day 1)	56
6.6	Percent of power saving (compared to R-134a) vs. Te for all mixtures using electrical power at $Tc = 37^{\circ}C$ and $Ta = 27 {\circ}C$	58
6.7	COP vs. Te for R-134a using electrical power at $Tc = 37$ °C and $Ta = 27$ °C	63
6.8	COP vs. Te for R-134a using solar power at $Tc = 37$ °C and $Ta = 27$ °C	63

6.9	COP vs. Te for LPG using electrical power at $Tc = 37$ °C and $Ta = 27$ °C	64
6.10	COP vs. Te for LPG using solar power at $Tc = 37$ °C and $Ta = 27$ °C	64
6.11	Refrigeration capacity vs. Te for R-134a using electrical power at $Tc = 37$ °C and $Ta = 27$ °C	65
6.12	Refrigeration capacity vs. Te for R-134a using solar power at $Tc = 37$ °C and $Ta = 27$ °C	65
6.13	Refrigeration capacity vs. Te for LPG using electrical power at $Tc = 37$ °C and $Ta = 27$ °C	66
6.14	Refrigeration capacity vs. Te for LPG using solar power at $Tc = 37$ °C and $Ta = 27$ °C	66
6.15	Compressor power vs. Te for R-134a using electrical power at $Tc = 37$ °C and $Ta = 27$ °C	67
6.16	Compressor power vs. Te for R-134a using solar power at $Tc = 37$ °C and $Ta = 27$ °C	67
6.17	Compressor power vs. Te for LPG using electrical power at $Tc = 37$ °C and $Ta = 27$ °C	68
6.18	Compressor power vs. Te for LPG using solar power at $Tc = 37$ °C and $Ta = 27$ °C	68
6.19	Mass flow rate vs. Te for R-134a using electrical power at $Tc = 37$ °C and $Ta = 27$ °C	69
6.20	Mass flow rate vs. Te for R-134a using solar power at $Tc = 37$ °C and $Ta = 27$ °C	69
6.21	Mass flow rate vs. Te for LPG using electrical power at $Tc = 37$ °C and $Ta = 27$ °C	70
6.22	Mass flow rate vs. Te for LPG using solar power at Tc = $37 ^{\circ}\text{C}$ and Ta = $27 ^{\circ}\text{C}$	70
6.23	COP vs. Tc for R-134a using electrical power at Te = -9 °C and Ta = $27 $ °C	71
6.24	COP vs. Tc for R-134a using solar power at Te = $-9 ^{\circ}\text{C}$ and Ta = 27 $^{\circ}\text{C}$	71
6.25	COP vs. Tc for LPG using electrical power at Te = $-9 ^{\circ}\text{C}$ and Ta = 27 $^{\circ}\text{C}$	72
6.26	COP vs. Tc for LPG using solar power at Te = -9 °C and Ta = 27 °C	72
6.27	Refrigeration capacity vs. Tc for R-134a using electrical power at Te = -9 °C and Ta=27 °C	73

Refrigeration capacity vs. Tc for R-134a using solar	73	
power at $Te = -9$ °C and $Ta=27$ °C		
Refrigeration capacity vs. Tc for LPG using electrical power at Te = -9 °C and Ta = 27 °C	74	It.
Refrigeration capacity vs. Tc for LPG using solar power at $T_0 = 0$ °C and $T_0 = 27$ °C	74	isoda
$\frac{at 1c9}{C} = \frac{at 1a - 27}{C}$		Ď
compressor power vs. Ic for R-134a using electrical power at $Te = -9$ °C and $Ta = 27$ °C	75	Sis
Compressor power vs. Tc for R-134a using solar power	75	The
at $1e = -9$ °C and $1a = 2/$ °C		of
Compressor power vs. To for LPG using electrical power at $Te = -9$ °C and $Ta = 27$ °C	76	er
Compressor power vs. Tc for LPG using solar power at		snt
Te = -9 °C and Ta = 27 °C	76	Ů Ů
Mass flow rate vs. Tc for R-134a using electrical power	77	. ue
at Te = -9 °C and Ta = 27 °C	11	rd;
Mass flow rate vs. Tc for R-134a using solar power at $Te = -9$ °C and $Ta = 27$ °C	77	f Joi
10 = -9 C and $1a = 27$ C Mass flow rate vs. To for LDC using electrical neuron at		0
The = $-9 ^{\circ}$ C and Ta = $27 ^{\circ}$ C	78	sity
Mass flow rate vs. Tc for LPG using solar power at Te =	70	Vel
$-9 ^{\circ}\mathrm{C}$ and $\mathrm{Ta} = 27 ^{\circ}\mathrm{C}$	10	ni.
COP vs. Te for all mixtures using electrical power at Tc = $37 ^{\circ}\text{C}$ and Ta = $27 ^{\circ}\text{C}$	82	ofU
COP vs. Te for all mixtures using solar power at $Tc = 37$ °C and $Ta = 27$ °C	82	brary
Refrigeration capacity vs. Te for all mixtures using electrical power at $Tc = 37$ °C and $Ta = 27$ °C	83	- Li
Refrigeration capacity vs. Te for all mixtures using solar power at $Tc = 37$ °C and $Ta = 27$ °C	83	erved
Compressor power vs. Te for all mixtures using		es
electrical power at $Tc = 37$ °C and $Ta = 27$ °C	84	s R
Compressor power vs. Te for all mixtures using solar	0.4	ţht
power at $Tc = 37$ °C and $Ta = 27$ °C	84	Zip
Mass flow rate vs. Te for all mixtures using electrical	95	11 H
power at $Tc = 37$ °C and $Ta = 27$ °C	65	A
Mass flow rate vs. Te for all mixtures using solar power at $Tc = 37$ °C and $Ta = 27$ °C	85	

6.28

6.29

6.30

6.31

6.32

6.33

6.34

6.35

6.36

6.37

6.38

6.39

6.40

6.41

6.42

6.43

6.44

6.45

6.46

٦

LIST OF APPENDICES

APPENDICES	92
APPENDIX A: Data and Results	93
Table A.1 R-134a on electrical power	93
Table A.2 R-134a on solar power	94
Table A.3 R-134a on solar power	95
Table A.4 LPG on electrical power	96
Table A.5 LPG on solar power	97
Table A.6 LPG on solar power	98
Table A.7 50% propane/50% butane on electrical power	99
Table A.8 50% propane and 50% butane on solar power	100
Table A.9 50% propane and 50% butane on solar power	101
Table A.10 70% propane and 30% butane on electrical power	102
Table A.11 70% propane and 30% butane on solar power	103
Table A.12 70% propane and 30% butane on solar power	104
Table A.13 Propane on electrical power	105
Table A.14 Propane on solar power	106
Table A.15 Propane on solar power	107

APPENDIX B	108
Table B.1 Saturated properties for R-134a	108
Table B.2 Superheated properties for R-134a	109
Table B.3 Saturated properties for propane	110
Table B.4 Saturated properties for butane	111
Figure B.1 Pressure-enthalpy diagram of propane	112
Figure B.2 Pressure-enthalpy diagram of butane	113

xiv

NOMENCLATURE

- COP: Coefficient of Performance
- Cp: Specific heat, (kJ/kg.°C)
- *h* : Enthalpy, (kJ/kg)
- I_{ref} : Refrigerator consumed current, (Ampere)
- I_s : Solar current, (Ampere)
- M : Mass, (kg)
- *m* : Molecular weight (kg/kmol)
- m: Mass flow rate, (kg/s)
- mf: Mass fraction
- *n* : Number of moles
- P: Pressure, (MPa)
- P_b : Butane pressure
- P_p : Propane pressure
- P_{pb} : Butane partial pressure
- P_{pp} : Propane partial pressure
- Q_{ref} : Refrigeration capacity, (Watt)
- q_{ref} : Refrigeration effect, (kJ/kg)
- T: Temperature, (°C)
- *t*: Time, (sec)
- V_{inv} : Inverter output voltage, (Volt)
- V_n : Nominal voltage, (Volt)
- w: Compression work, (kJ/kg)
- W: Power consumption, (Watt)
- *y* : Mole fraction

Subscripts

A: Air

- a: Ambient
- al: Aluminum
- b: Butane
- c: Condenser
- co: Container
- e: Evaporator
- p: Propane
- w: Water

Abbreviations

ASHRAE: American Society of Heating, Refrigerating and Air-conditioning Engineers CFCs: Chlorofluorocarbons GWP: Global Warming Potential HCFCs: Hydrochlorofluorocarbons HCs: Hydrocarbons HFCs: Hydrofluorocarbons **ODP: Ozone Depletion Potential**

PERFORMANCE STUDY OF A SOLAR REFRIGERATOR USING A MIXTURE OF PROPANE AND BUTANE WITH DIFFERENT RATIOS AS A REPLACEMENT TO R-134a

By

Marwan Yahya Basheer AL-Dayaflah

Supervisor

Dr. Mahmoud Hammad, Prof.

ABSTRACT

A domestic refrigerator was tested by using different mixtures of propane and butane without changing or modifying the refrigerator components using both electrical and solar power. The objective of this work was to check which LPG charge composition will give the optimum performance for the refrigerator as compared to R-134a.

Six compositions were tested. It was found that the best COP was at 40g charge (57% of the original R-134a quantity), this charge quantity was taken to be the best charge quantity for all refrigerant compositions used in this work. Various performance curves were presented for a range of evaporating and condensing temperatures.

www.manaraa.com

Comparing power consumption for various compositions, it was found that a power saving of 7% was obtained in the case of LPG as compared to R-134a, and that power consumption increased to 6%, 9% and 13% in the case of 50% propane / 50% butane, 70% propane / 30% butane and pure propane, respectively.

In average and compared to COP of R-134a at constant Tc, the LPG gave a COP about 6% higher, but for 50% propane and 50% butane it was 10% lower than that for R-134a. Also for 70% propane and 30% butane it was 19% lower than that in R-134a, then the lowest COP was in the case of propane which gave 32% lower than R-134a.

Results showed that the net performance when using solar power was very close to that for electrical power, provided that the power is maintained in the period of no solar intensity available.

The results showed that the most attractive alternative refrigerant to R-134a is the LPG. All other experimented mixtures can be used as a replacement for R-134a, but their performance is not as attractive as that of LPG.

Chapter One

1

INTRODUCTION

1.1 Foreword

Natural ice was harvested, distributed and used in both commercial and home applications in the mid-1800s to refrigerate food. The idea that cold could be produced by the forced evaporation of a volatile liquid under reduced pressure had been previously pursued by William Cullen in the eighteenth century.

Chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) which were produced first during the thirties of the 20th century have many suitable properties, for example, nonflammability, low toxicity and material compatibility that have led to their common widespread use by both consumers and industries around the world, especially as refrigerants in air conditioning and refrigerating systems.

Solar energy is available most of the year period in the countries of solar belts, such as Jordan with high intensity in some seasons. This led to increase the researches to get the benefit of this effective renewable energy source. That is because solar energy is clean, mobile energy source and effective for many applications; one of these applications is refrigeration system.

1.2 Refrigerants and Environment

Results from many researches show that ozone layer is being depleted by the chlorine atom in the CFCs and HCFCs. The general consensus for the cause of this event is that free chlorine radicals remove ozone from the atmosphere, and later, chlorine atoms continue to convert more ozone to oxygen. The presence of chlorine in

the stratosphere is the result of the migration of chlorine containing chemicals. The CFCs and HCFCs are a large class of chemicals that behave in this manner.

Since the discovery of the depletion of the earth's ozone layer caused mainly by CFCs and HCFCs and as a result of the 1992 United Nations Environment Program meeting, the phase out of CFC-11 and CFC-12, used mainly in conventional refrigeration and air conditioning equipment, was expected by 1996. The thermophysical properties of HFC-134a are very similar to those of CFC-12 and are also non-toxic and environmentally safe refrigerant; the American Household Appliances Manufacturers have recommended HFC-134a as a potential replacement for CFC-12 in domestic refrigerators. However, while the ozone depletion potential (ODP) of HFC-134a is zero, the global warming potential (GWP) is extremely high. This refrigerant is highly expensive. Properties, ODP and GWP for some refrigerants are listed in Table 1.1. For this reason, it is expected that the production and use of HFC-134a may be terminated in the near future.

Designation	Chemical	Ozone Depletion	Global Warming			
	Formula	Potential ¹	Potential ²			
Ozone Depleting & Glo	Ozone Depleting & Global Warming Chemicals					
CFC-11	CCl_3F	1	3,400			
CFC-12	CCl_2F_2	0.89	7,100			
CFC-13	$CClF_3$		13,000			
CFC-113	$C_2F_3Cl_3$	0.81	4,500			
CFC-114	$C_2F_4Cl_2$	0.69	7,000			
CFC-115	$C_2F_5Cl_1$	0.32	7,000			
Halon-1211	CF_2ClBr	2.2-3.5				
Halon-1301	CF_3Br	8-16	4,900			
Halon-2402	$C_2F_4Br_2$	5-6.2				
carbon tetrachloride	CCl_4	1.13	1,300			
methyl chloroform	$CH_{3}Ccl_{3}$	0.14				
nitrous oxide	N_2O		270			
Ozone Depleting & Glo	bal Warming Cl	iemicals - Class 2				
HCFC-22	CHF_2Cl	0.048	1,600			
HCFC-123	$C_2HF_3Cl_2$	0.017	90			
HCFC-124	C_2HF_4Cl	0.019	440			
HCFC-125	C_2HF_5	0.000	3,400			
HCFC-141b	$C_2H_3FCl_2$	0.090	580			
HCFC-142b	$C_2H_3F_2Cl$	0.054	1800			
Global Warming, non-C	zone Depleting	Chemicals				
carbon dioxide	CO_2	0	1			
methane	CH_4	0	11			
HFC-125	CHF_2CF_3	0	90			
HFC-134a	CFH_2CF_3	0	1,000			
HFC-152a	CH_3CHF_2	0	2,400			
perfluorobutane	$C_{4}F_{10}$	0	5,500			
perfluoropentane	C_5F_{12}	0	5,500			
perfluorohexane	C_6F_{14}	0	5,100			
perfluorotributylamine	$N(C_4F_9)_3$	0	4,300			

Table 1.1. Properties, ODPs and GWPs for some refrigerants

1 - relative to R11

2 - relative to CO_2

1.3 Alternative Refrigerants

Alternative refrigerants are found to replace the CFCs because it is harmful to environment. Such alternative refrigerants should posses good thermodynamic and physical properties, high chemical and thermal stability, low toxicity, good miscibility with lubricants, compatibility with materials, less expensive and low flammability with no environmental side effect.

The main requirement which decide whether a substance is applicable as a refrigerant in a certain temperature range or not, is the thermodynamic properties, as will be discussed later. If the thermodynamic properties meet the requirements, the other characters must be taken into consideration and at least to be acceptable as close as possible.

Several alternative refrigerants have been evaluated, HFC-134a was considered as the substitute to R-12 due to its physical and thermodynamic properties similar to those of R-12 and benign environmental effect of ozone. But HFC-134a contains fluorine; these fluorinated substances do not damage the ozone layer, yet have very significant greenhouse warming effects. Nevertheless, several disadvantages of this fluid in connection with its refrigeration oil and remaining substances from manufacturing are evident.

Hydrocarbons (HCs) are an environmentally sound alternative for CFCs and HFCs, the HCs as a refrigerant have been known and used since the beginning of this century. The development of the inert CFCs in the 1930s put the HC technology in the background; CFCs have been applied since then in numerous refrigeration equipments. There is currently little information on the application of hydrocarbon as refrigerant in the refrigerator without modification the refrigerator components.

Global Warming Potentials for propane (R-290), butane (R-600) and R-134a; relative to 1 for CO₂; are 20, 20 and 1000 respectively. This shows the benefits that the environment will get when R-290 and R-600 were used as alternative refrigerants.

The absence of chlorine atoms from hydrocarbons results in no ozone depletion potential. In addition, global warming potential is very low for hydrocarbons, owing to the higher latent heat of hydrocarbons compared with that of R-12 (Hammad and Alsaad, 1999).

Advantages of HCs include the following:

- 1. No ozone depletion effect.
- 2. Low global warming effects, which is the most important point.
- No second conversion, such as the one hanging over all halogen compounds (e.g. HFC-134a), is required in the long run.
- 4. Energy saving up to over 10% over CFCs and HFC-134a.
- 5. They are available and easy to produce all over the world with an acceptable cost.
- 6. The HCs technology is relatively simple to adopt compared to synthetic chemicals, since the same oil and compressor type are used there. This technology will be the future driving force.

The only disadvantage of using HCs as refrigerants is their flammability, but since the mass contents of the HCs mixture in a refrigerator is very small, the risk of an explosion is minimal if happened.

Figures 1.1 and 1.2 show the typical components and a detailed T-s diagram for the vapor compression cycle.

Figure 1.1. Typical vapor compression cycle

Figure 1.2. Detailed T-s diagram for typical vapor compression cycle

Chapter Two

LITERATURE SURVEY

As of 1989, CFC-based refrigerants were banned via the Montreal Protocol due to the negative effects they have on the ozone layer. The Montreal Protocol was ratified by most CFC producing and consuming nations in Montreal, Quebec, Canada in September 1987. Greenpeace objected to the ratification because the Montreal Protocol instead ratified the use of HFC refrigeration, which are not ozone-depleting but are still powerful global warming gases. Searching for an alternative for home use refrigeration, dkk Scharfenstein (Germany) developed a propane-based CFC as well as an HFC-free refrigerator in 1992 with assistance from Greenpeace. All the previous developments were a direct result of a scientific report released in June 1974.

Scientists and researchers are searching for an environmentally-benign refrigerant for the domestic refrigerator and freezer. Hydrocarbons especially propane, butane and isobutene are proposed as an environmentally-benign refrigerant. Hydrocarbons are free from ozone depletion potential and have negligible global warming potential.

Lee and Su (2002) conducted an experimental study on the use of isobutene as refrigerant in domestic refrigerator. The performance was comparable with those of CFC-12 and HCFC-22 was used as refrigerant.

Akash and Said (2003) studied the performance of LPG from local market (30% propane, 55% n-butane and 15% isobutene by mass) as an alternative refrigerant for CFC-12 in domestic refrigerator with masses of 50g, 80g and 100g. The result showed that a mass charge of 80g gave the best performance.

Devotta et al., (2001) selected HFC-134a, HC-290, R-407C, R-410A, and three blends of HFC-32, HFC-134a and HFC-125 and found that HFC-134a offers the highest COP, but its capacity is the lowest and requires much larger compressors. The characteristics of HC-290 are very close to those of HCFC-22, and compressors require very little modification. Therefore, HC-290 is a potential candidate provided the risk concerns are mitigated as had been accomplished for refrigerators.

Sekhar et al., (2004) investigated an experiment to retrofit a CFC-12 system to eco-friendly system using of HCFC-134a / HC-290 / HC-600a without changing the mineral oil and found that the new mixture could reduce the energy consumption by 4 to 11% and improve the actual COP by 3 to 8% from that of CFC-12.

Sekhar et al., (2005) also investigated refrigerant mixture of HCFC-134a/HC in two low temperature system (domestic refrigerator and deep freezer) and two medium temperature system (vending machine and walk in cooler) and found that the HCFC-134a/HC mixture that contains 9% HC blend (by weight) has better performance resulting in 10-30% and 5-15% less energy consumption (than CFC) in medium and low temperature system respectively.

Driessen et al. (1994) divided their work into two parts. In the first part, they made theoretical analysis for determining the most suitable HC refrigerants to replace R-12 in domestic refrigeration system which showed the performance compared to R-12, and the main impacts of each HC refrigerant on the current R-12 refrigeration systems. In the second part, they made experimental evaluation of the performance of R-600a and a mixture of R-290/R-600a (60/40) as a substitute to R-12 in domestic refrigeration systems which resulted in that R-600a performance could be slightly increased by adjusting the capillary tube. For R-290/R-600a, the necessity of optimizing the evaporator and the capillary tube was evident.

www.manaraa.com

Vollmer and Findessen (1994) calculated the thermodynamic and thermophysical properties of the binary mixture propane/isobutane. They found that the mixture was an acceptable substitute for R-12 apart from the flammability and only minor changes on the refrigerant circuit were necessary to use the mixture in an originally R-12 designed refrigerator with an advantage of higher energetic efficiency compared to R-12.

Richardson and Butterworth (1995) conducted experiments to investigate the performance of hydrocarbon refrigerants in a hermetic vapor compression system, despite their potential flammability. They demonstrated that hydrocarbons could safely be used as a refrigerant in hermetic vapor compression systems, and achieve better COPs than R-12 under similar conditions and design. Mixtures of 50% propane and 50% isobutane have similar saturation characteristics compared with R-12, but COP would seem to improve as the proportion of propane were increased.

Kanbour et al. (1997) did an experimental study to compare the performance of propane (R-290) as a substitute refrigerant for R-12. They concluded that R-290 could be used as a cheap alternative refrigerant in simple domestic refrigerator provided that the charge and capillary tube are varied to yield the same performance as R-12.

Lorentzen (1994) studied the use of natural compounds as refrigerants. He concluded that suitable natural compounds exist to satisfy the requirements for all common applications of refrigeration and heat pumps, three refrigerants would be sufficient to satisfy the normal requirement, which are ammonia, propane and carbon dioxide. They are cheaper and with less power consumption, some changes in current design and practice would certainly be required.

James and Missenden (1992) investigated the use of propane as a substitute to R-12 in domestic refrigerators. Different comparative experiments were done and the

most important were the safety tests, which include the leakage inside a refrigerator cabinet and ignition, the leakage near a flame such as a cooker or boiler and the risk in the event of a fire. They concluded that the leakage inside a refrigerator cabinet and ignition was relatively easy to overcome either by placing the evaporator between the insulation and the inner cabinet skin or by placing the light switch and thermostat outside the refrigerated enclosure, in any event the consequences were not catastrophic. To overcome the second problem they advised the user not to place the refrigerator next to the cooker or boiler so in the case of any leakage, the concentration of propane in the room could not by any means reach its lower explosion limit. The fire test showed that the greater hazard in a fire event was the toxic fumes from the cabinet and its insulation, on the other hand propane did not noticeably add to the configuration nor escape catastrophically. The products of combustion from propane were much less dangerous than those of R-12 which were intensely toxic products.

Rivis and Bidone (1994) studied theoretically the performance of a complete range of isobutane and propane mixture in a freezer. They compared it with the two pure gases, and to other traditional refrigerants (R-12 and R-134a) within the evaporation range from -10 to -35°C, and condensation range from 45 to 55°C. They concluded that there is no ideal mixture of isobutane and propane that will provide the best results for all the necessary parameters. Mixtures of approximately (40/60) and (50/50) are the best candidates for replacing R-12 and R-134a, these mixtures have characteristics similar to R-12 and R-134a (mainly pressure and volumetric capacity). However, the temperature glide is at maximum value if the (50/50) mixture is selected, another negative point for the (50/50) mixture is its low coefficient of performance. It was found that from COP point view, the best candidate is pure isobutane.

Habash (1994) studied experimentally the performance of a domestic refrigerator using a Liquefied Petroleum Gas (LPG) as a refrigerant and compared it with that of R-12; he showed that lower evaporating temperatures were obtained using LPG than those of using R-12 for the same condensing temperature, lower refrigeration capacity and slightly lower power consumption, without any change in the design.

Hammad and Alsaad (1999) investigated experimentally the performance of R-12 domestic refrigerator, by replacing R-12 with four mixtures of different ratios of propane, butane and isobutane. The domestic refrigerator was charged and tested with each of the four hydrocarbon mixtures. Their work showed that the hydrocarbon mixture with 50% propane, 38.3% butane and 11.7% isobutane is the most suitable alternative refrigerant with the best performance of all hydrocarbon mixtures investigated, and nearest to R-12 performance.

Ritter and Colbourne (1998) discussed the technique of Quantitative Risk Assessment with respect to its application to flammable refrigerants, specifically hydrocarbons. They used background risks as a basis for comparison of calculated frequencies of fires and fatalities in respect to the use of flammable refrigerants, and constructed to the actual performance of hydrocarbon charged freezer in a fire situation. They concluded that the use of hydrocarbon refrigerants does not significantly increase the potential for fires or fatalities.

All of the previous work was concentrated on finding a suitable alternative refrigerant for R-12 mainly for many equipment running on the same original power source (electrical power).

In this study, the use of a propane and butane mixtures with different ratios to replace R-134a in a domestic refrigerator work on electrical and solar power will be experimentally tested and studied. The performance curves for these new refrigerants

are going to be investigated and a comparison of them with those of the traditional R-134a is going to be achieved. There will be no change or modification on the refrigerator components.

Chapter Three

ALTERNATIVE REFRIGERANT PROPERTIES

3.1 Introduction

While it is playing a major role in ozone depletion, it has been proven that R-12 is an ideal refrigerant. The search for an alternative concentrated on thermodynamic, physical and chemical similarity to that of R-12. Notable among these is the hydrofluorocarbon R-134a which is used as a replacement for R-12.

Hydrocarbons offers a cheap, readily available and environmentally acceptable alternative to CFCs, some standard refrigerant designations are listed in Table 3.1 below.

Table 3.1. ASHRAE standard designation of refrigerant (ASHRAE Standard 34-1992, Handbook of Fundamentals, 1993)

Refrigerant No.	Chemical Name	Chemical Formula		
R-12	Dichlorodifluoromethane	CCl ₂ F ₂		
R-22	Chlorodifluoromethane	CHClF2		
R-134a	Tetrafluoroethane	CF3CH2F		
R-290	Propane	СзН8		
R-600	Butane	C4H10		
R-600a	Isobutane	C4H10		

In order to find an alternative for a refrigerant, one must compare the thermodynamic properties of the alternative to that of a chosen Freon, also the processes of condensation and evaporation occurring in the refrigerator heat exchangers demand

that the saturated vapor pressure versus temperature for any Freon and its alternative should be close to each other.

Any alternative refrigerants must satisfy some requirements; such as chemical stability under conditions of use is the most important characteristic, safety codes may require a non-flammable refrigerant and low toxicity for application, cost, availability, compatibility with compressor lubricants and materials with which equipment is constructed and also environmentally acceptable. In the next paragraphs the properties and characteristics of the original refrigerant and the alternative (HCs) will be discussed.

3.2 Thermodynamic properties

Thermodynamic properties are the most important properties in selecting refrigerants for any application, the thermodynamic properties of R-12, propane and butane are listed in Table 3.2.

Properties	Unit	R-134a	R-290	R-600	R-290/R-600 Mixture (50% / 50%)
Boiling point at atmospheric pressure	°C	-26.3	-42.07	-0.5	-23.8
Freezing point	°C	-103.3	-187.7	-138.5	-164.8
Critical temperature	°C	101.1	97	152	121
Critical pressure	MPa	4.06	4.25	3.79	4.05
Latent heat of vaporization	kJ/kg	217.2	423.3	386	404.6

Table 3.2. Thermodynamic properties of refrigerants (ASHRAE Handbook ofFundamentals, 1993)

3.2.1 Boiling point

The boiling point of the refrigerant must be low at atmospheric pressure for an efficient refrigerant. Otherwise, it requires operating the compressor at high vacuums, which reduces the capacity of the system. Table 3.2 shows that propane has the lowest boiling point while butane has relatively higher boiling point compared to R-134a. Therefore, the mixture of propane and butane has a boiling temperature close to the boiling point of R-134a.

3.2.2 Freezing point

Also a low freezing temperature of the refrigerant is required because the refrigerant must not solidify during normal operating conditions. The refrigerant must have a freezing point well below the operating evaporator temperatures. All refrigerants in Table 3.2 have a low freezing temperature.

3.2.3 Critical temperature and pressure

The critical temperature of the refrigerant used should be higher than the temperature occurring in the condenser for easy condensation of the refrigerant vapor. Referring to Table 3.2, the critical temperatures of the refrigerants are well above the temperatures occurring in the condenser. Also the critical pressure for the refrigerants is much higher than any pressure experienced in the system.

3.2.4 Latent heat of vaporization

A refrigerant with high latent heat will absorb more heat per kg of refrigerant than a refrigerant with a lower latent heat (higher refrigerating effect). Thus, if a

refrigerant with a high latent heat of vaporization is used; lower refrigerant charge mass and/or smaller compressor, condenser and evaporator can be used. As shown in Table 3.2, the latent heat of vaporization for propane and butane are comparatively higher than that of R-134a. The mixture latent heat of vaporization is larger than that of R-134a, this means a lower charge mass of mixture can be used than that of R-134a.

3.2.5 Evaporating and condensing pressure

The operating pressure is one of the major considerations in the selection of refrigerants for the economical working of the refrigeration system. Pressures in the evaporator and condenser should be positive and above atmospheric to prevent air from leaking into the refrigeration system. Also the pressures should not be too high above atmospheric, otherwise expansive piping and equipment will be required.

Also a low compression ratio results in low power consumption. Therefore, the refrigerant with the lowest compression ratios (condenser to evaporator pressure ratio) is desirable.

3.2.6 Coefficient of performance (COP)

Many researchers state that propane and butane have a COP near or slightly high to that of R-134a, so the mixture when used as alternative refrigerant in domestic refrigerators will have higher good values of COP than R-134a under the same operating conditions.

3.2.7 Compressor discharge temperature

A high temperature at the compressor exit could result in oil breakdown, causing excessive wear or reduced life of the discharge valves and compressor overheating. For these reasons, a low discharge temperature is desirable; both propane and butane have slightly higher discharge temperature than R-134a.

3.3 Physical properties

3.3.1 Specific heat

The quantity of heat required to raise 1 kg of a substance 1°C is the specific heat. Low specific heat of liquid tends to increase the subcooling of liquid (in this case low amount of heat rejection in the condenser is sufficient to lower the liquid temperature considerably), on the other hand, high specific heat of vapor tends to decrease the superheating of vapor. As shown in Table 3.3, both propane and butane have higher specific heats than R-134a.

3.3.2 Thermal conductivity

المنسلة للاستشارات

Thermal conductivity of refrigerant in both liquid and gaseous states must be high, this is desirable for a high heat transfer coefficient, thus more efficient heat transfer in the evaporator and the condenser. As shown in Table 3.3, that propane and butane have considerable high thermal conductivities in both liquid and gaseous states compared to R-134a.

3.3.3 Viscosity

Viscosity is a measure of flowing quality. It is desirable to use refrigerants with low viscosities in both liquid and vapor states for higher heat transfer in the evaporator and condenser, low pumping power and small pressure drops during flow. As shown in Table 3.3, propane and butane have considerably lower viscosity in both liquid and vapor states than R-134a.

Table 3.3. Physical properties of R-134a, propane and butane, at 25°C and 1 atm.

Properties	Unit	R-134a		R-290		R-600	
		Liquid	Vapor	Liquid	Vapor	Liquid	Vapor
Specific heat	kJ/kg.K	1.42	1.01	2.71	2.03	-	1.72
Thermal conductivity	mw/m.K	81.9	14.06	91.2	19.9	-	17.5
Viscosity	µPa.s	212.9	12.2	111.9	9.116	-	7.9

3.3.4 Specific volume

The low specific volume of the refrigerant at the suction into the compressor is always considerable, because it reduces the size of the compressor for the same refrigeration capacity. Propane and butane have relatively high suction specific volume than R-134a.

3.3.5 Leak tendency and detection:

The leakage of refrigerants should be low; a dense fluid has fewer tendencies to leak than lower density fluid. Also, the detection of a leak should be easy; the greatest

drawback of fluorocarbons is the fact that they are odorless. This, sometimes, results in a complete loss of costly gas from leaks without being detected. On the other hand,

hydrocarbons leak can be easily detected by their distinct odor.

3.4 Chemical properties

3.4.1 Miscibility with oil

Lubricant oils used in refrigeration have special requirement beyond those of other industrial lubricants. The oil is in contact with the refrigerant and to a greater or lesser extent circulates with it. The oil must be able to circulate freely throughout the system and it must remain fluid at low temperatures so as not to accumulate in the evaporator. Miscibility of oil and the refrigerant is the ability of the refrigerant to mix with oil. Therefore, it is an important characteristic in the selection of any refrigerant. It is desirable to have good miscibility and solubility of the refrigerant/lubricant combination in order to assure efficient oil return and to avoid heat transfer degradation. Another important requirement is that the viscosity of the working fluid is adequate for hydrodynamic lubrication of compressor bearings.

The mineral oils used with CFC refrigerants can be used with propane/butane mixtures. In the case of replacing R-134a by hydrocarbons one must change the original R-134a oil, which is polyolester by mineral oil to avoid any side reactions between the refrigerant and the lubricant oil.

3.4.2 Toxicity

A refrigerant with non-toxic nature is one of the most important properties that make it desirable. The refrigerant may leak from the refrigeration system so the toxic

refrigerant has the effect of a poison, which may cause the injury to the human body or death depending upon its percentage in air. The standards classified refrigerants according to the hazard involved in their use. Group A1 refrigerants are the least hazardous, group B3 the most hazardous, in which propane and butane are classified as either non-toxic (group A3) or slightly more toxic than R-134a.

3.4.3 Flammability

Refrigerant should not have any danger of explosion in the presence of air or in association with lubricating oil; R-134a is a non-flammable refrigerant. Propane and butane are hydrocarbons; the most important issue regarding hydrocarbons as a refrigerant is their flammability. Whilst this is an emotive subject, it should be recommended that millions of tons of hydrocarbons are used safely throughout the world every year for cooking, heating and powering vehicles.

In a domestic refrigeration system, the mass content of propane and butane is very small, and then the risk of an explosion does not exist. Thus, if the refrigerant, which is less than 200g, leaks from a refrigerator in the room or the kitchen, an explosion would be impossible. The lower explosion limits of propane and butane in air are 2.3 %, 1.9 %, by volume respectively. To generate a flammable mixture in a room with around 16 m³, 670g of propane or 810g of butane is necessary, which is a large quantity in comparison to that contained in a refrigerator. Also a portion of the mixture will not be released by the compressor oil in a short period of time.

3.4.4 Water and solubility

Refrigeration system is a closed circuit, once a contaminant enters the system it will stay there until servicing can remove it. Water is the most undesirable contaminant in refrigeration systems, because it may be cause rusting, corrosion, copper plating, refrigerant decomposition, valve damage, oil sludging and general deterioration of the system. If water solubility in the refrigerant is exceeded at low temperatures, ice may formed in the capillary tube and restrict the flow of refrigerant or stop it.

Solubility of water in the refrigerant should be as low as possible, the solubility of water in fluorocarbons in general is low (Solubility of Water in HFC-134a is 0.11% at 25 °C), also water is not soluble in hydrocarbons, and they do not absorb any moisture from air.

3.4.5 Compatibility

The selected refrigerant decides the material to be used for the construction of the refrigeration system. But if a refrigerant is seceding to replace another used refrigerant, then it should have similar effect on the materials as the replaced refrigerant in order to be a successful alternative, without changing the system materials.

Refrigerant must be non-corrosive in order to use more common materials, refrigerants must be chemically inert with their system construction materials as well as they must also remain inert in the presence of water and air, Freon refrigerants are noncorrosive with all metals, but they become acidic with refrigerants as they are readily attacked by acids. Propane and butane, as well as most of the hydrocarbons are noncorrosive with all metals even in the presence of water and air.

3.5 Side properties

One should mention other factors that are not critical in deciding the use of refrigerant, but are fairly important in comparing between alternative refrigerants. These factors are:

3.5.1 Cost

Cost is a critical factor when comparing between alternative refrigerants that have similar performance, especially for developing countries. Propane and butane mixture is a kind of hydrocarbons, which is cheap in general, when compared with other refrigerants especially when the mixture put into mass-production, or when use LPG.

3.5.2 Availability

Availability of the refrigerant used in the refrigeration applications is an important factor, propane and butane can be produced from petroleum natural gas, which is available in enormous quantities, and therefore provides an attractive alternative for R-134a.

3.5.3 Noise

Researchers found that, due to the physical properties of propane and butane, and their relationship with sound waves. This makes the propane and butane mixture as a refrigerant in the refrigerators of less noise than that of Freon. This also can be attributed to lower viscosity of the mixture than Freon, this decrease the viscosity effect on valve opening which decreases the valve flattering.

3.6 Electric vs. solar power

A solar power supply system should be designed to produce enough power to drive the specific application it needs. But, due to variability of solar power with time, it is crucial to check that the design provides enough array size and storage capacity for un-interrupted supply.

In this work the design of the PV array and storage system was actually made and experimentally checked. Minimum number of modules and storage batteries was envisaged to produce stable electric power. This was the major concern in the comparison between electric and solar power.

Chapter Four

EXPERIMENTAL WORK PROCEDURE

4.1 Introduction

A used domestic refrigerator was used in this research. Performance was tested with the usual electrical power and with solar electrical (P.V. generator) power, to ensure close behavior in both conditions.

The original refrigerant (R-12) was replaced by R-134a (with changing the lubricant oil to polyolester oil type), then three different mixtures of propane/butane were installed one by one. The performance tests were carried out for all of the previous charges using both electrical and solar power. For the propane/butane mixtures the lubricant type used was mineral oil, due to the fact that the HCs lubricant oil is the same as that for R-12 systems.

4.2 Refrigerator Specifications

A used simple domestic refrigerator was intentionally used to the aim of conducting the research on a refrigerator that is used or may be used by any person in the real life. This refrigerator contains one compartment with no defrosting or forced air circulation devices. The specifications of the refrigerator are listed in Table 4.1.

MODEL	FR-090C			
MANUFACTURER	DAEWOO ELECTRONICS (KOREA)			
DAEWOO SERIAL No.	2018			
CAPACITY	74 Liters			
REFRIGERANT CHARGE MASS	70g			
NOMINAL INPUT POWER	80 W			
NOMINAL CURRENT/VOLTAGE AC	0.5 A/ 220 V @ 50Hz			
REFRIGERANT	R12			
DIMENSIONS	45x44x72 cm			
COMPRESSOR:				
MODEL: FN24N45				
220/240 V – 50Hz, 1 PH R-12				
THERMALLY PROTECTED				
MATSUSHITA ELECTRIC IND. Co. LTD (JAPAN)				

25

4.3 Measuring instruments

The following performance parameters of the refrigerator were measured: temperatures, power consumption (current), time, charge mass, water (load) mass, solar intensity, solar current and battery voltage.

4.3.1 Temperature measurement

Copper-Constantan thermocouples type was used to measure the temperatures, at the following points:

- 1. Compressor inlet, T_1
- 2. Compressor outlet, T_2
- 3. Condenser middle point, T_3

- 4. Condenser outlet, T_4
- 5. Evaporator, T_5
- 6. Refrigerator space, T_6
- 7. Load (hot water), T_7
- 8. Ambient, T_a

The thermocouples were connected to a data logging system (K-TYPE, MASTECH MS6501 THERMOMETER, RANGE: -50° C to 150° C) with an accuracy of $\pm 0.05^{\circ}$ C.

4.3.2 Pressure measurement

Due to the complexity and huge data to be measured at the same moment; in this research it was assumed that evaporation pressure (P1) is equal to the saturation pressure at evaporator temperature, and condensation pressure (P2) is equal to the saturation pressure at condenser middle temperature.

4.3.3 Power consumption measurement

In both electrical side of power and solar side a clamp-meter and voltmeter were used to measure the current and voltage during the test period.

4.3.4 Time measurement

Time intervals were measured precisely using a stop watch, and these intervals were taken based on the variation of readings and the aim of that specific reading along the cycle.

4.3.5 Mass measurement

The refrigerant charges mass and load mass was measured using a digital scale of the following specifications:

MANUFACTURER: SARTORIUS AG GOTTINEN, GERMANY

TYPE: QT-000V2

Fabrication No: 10506570

RANGE/ACCURACY:12000g/1g

4.3.6 Solar system measurements

In this research two photovoltaic modules connected in series were used along with a solar charge controller, two storage batteries connected in series and an inverter. These equipment were connected together to form the solar power system. Solar intensity was measured using a pyranometer, which was fitted on the surface of the photovoltaic modules which were oriented to the south. The modules were inclined by an angle of 35°.

Tables 4.2, 4.3 and 4.4 show the specifications of the modules, batteries and the inverter respectively.

PHOTOVOLTAIC MODULE			
MODEL	KC70		
SERIAL NO.	00ZH1A0067		
DATE	2000.12		
NOMINAL MAXIMUM OUTPUT	70 W		
NOMINAL OPEN CIRCUIT VOLTAGE	21.5 V		
NOMINAL SHORT CIRCUIT CURRENT	4.35 A		
NOMINAL MAXIMUM OUTPUT VOLTAGE	16.9 V		
NOMINAL MAXIMUM OUTPUT CURRENT	4.14 A		
MAXIMUM SYSTEM VOLTAGE	750 V		
NOMINAL MASS	7 kg		
DIMENSIONS	85 X 65 cm		
MANUFACTURER	KYOCERA CORPORATION		
	MADE IN JAPAN		
DIMENSIONS	85 X 65 cm		

Table 4.2. Photovoltaic module specifications

Table 4.3. Storage batteries specifications

BATTERY	
SUN XTENDER SERIES	
PART NO.	PUX-12100T
NOMINAL VOLTAGE	12 V
AMPERE HOUR CAPACITY @ 24 hr RATE	89 A
CYCLIC APPLICATIONS 2.37 VOLT/CELL @ 77 F°	14.2 VOLTS
FLOAT/STAND BY APPLICATIONS 2.2 to 2.23	13.2 to 13.4 VOLTS
VOLTS/CELL @ 77 F°	
TERMINAL TORQUE VALUE	70 inch/Ibs
MANUFACTURED BY	CONCORDE BATTERY
	CORPORATION,
	WESTCOVINA, CA,
	U.S.A

INVERTER			
MASTERVOLT Mass Sine 24/1500 (230 V)			
GENERAL SPECIFICATIONS			
Nominal battery voltage	24V		
P30 power Tamb=25°C, cos phi 1	1500 VA		
Nom. power Tamb=40°C, cos phi 1	1200 VA		
Maximal peak load	2900 VA		
Output waveform	true sine		
Maximal efficiency	92%		
Output voltage	230V (±5%)		
Frequency	50Hz (±0.05Hz)		
Dimensions (HxWxD)	340x261x130 mm		
Weight	6 kg		
Minimum battery capacity	>150 Ah		
TECHNICAL SPECIFICATIONS			
Technology	HF		
Switch off voltage low battery	19V (±0.5V)		
Switch on voltage low battery	22V (±0.5V)		
Switch off voltage high battery	33V (±0.5V)		
Switch on voltage high battery	31V (±0.5V)		
Max. allowable ripple on DC	5% RMS		
Input current (nominal load)	70A		
No load power consumption (off mode)	0 mA		
No load power consumption (stand-by mode)	25mA/0.6W		
No load power consumption ('low energy' mode - 208V)	180mA/4.5W		
No load power consumption ('high power' mode - 230V)	200mA/5W		
DC fuse required (slow blow)	100A		
Minimum DC cable size	25 mm ²		

 Table 4.4. Inverter specifications

The readings of solar current and battery voltage was taken from the solar charge controller (PROSTAR, VERSION: PS-30M, MORNING STAR CORPORATION), which was connected between the solar modules and the storage batteries.

Figure 4.3 only two modules were used out of the six modules.

Figure 4.1. The experimental setup

Figure 4.2. Refrigerator interior

Figure 4.3. Photovoltaic modules

Figure 4.4. Storage batteries, charge controller and inverter

4.4 Hydrocarbons Mixtures

The mixture of propane and butane was achieved by mixing known masses of LPG and pure propane. An LPG bottle (30% propane, 70% butane) for domestic use from Jordan Petroleum Refinery was used. The propane used in this research was taken from a propane bottle contains 400g imported from USA, and has the specifications in Table 4.5 below:

HAZARDOUS INGREDIENTS/IDENTITY INFORMATION			
INGREDIENT	% WEIGHT		
PROPANE	85-100		
PROPYLENE	0-10		
BUTANE & HEAVIER	0-2.5		
ETHANE	0-5		
ETHYL MERCAPTAN (ODORANT)	<0.1		
PHYSICAL/CHEMICAL, FIRE AN	ND EXPLOSION HAZARD DATA		
PROPERTY	VALUE		
Appearance and odor	Colorless gas, liquid under pressure.		
	Mercaptan "rotten eggs" odor		
Boiling point	- 44 degrees F.		
Evaporation rate (Butyl Acetate = 1)	<1 (diffuses readily)		
Flash point	-156 degrees F.		
Liquid to vapor expansion ratio	1:270		
Molecular weight	44.096		
Solubility in water	Slight		
Specific gravity (liquid)	0.500 - 0.510 (Water = 1)		
Specific gravity (vapor)	1.52 (Air = 1)		
Vapor pressure (maximum)	208 PSIG @ 100 degrees F.		
Flammability limits	2.15% - 9.6% by volume		
Auto ignition temperature	940 F.		

Table 4.5. Properties of the propane

UNIWELD PRODUCTS, INC., January 2008

4.5 Sizing the solar power system

Number of modules:

Refrigerator power = inverter output voltage * current consumed by refrigerator = V_{inv} * I_{ref} = 230 * 0.52 (in average) = 119.6 Watt.

Refrigerator power consumed per day (assume 14 operational hours / day)

= 119.6 * 14 = 1674.4 Whr.

Modules output power required at 7 peak hours per day = 1674.4 / 7

= 239.2 Watt, add 10 % for system inefficiencies (inverter, wiring,...), then it

will be 239.2 * 1.1 = 263.12 Watt.

Number of modules required = Modules output power required / nominal output power for each module = 263.12 / 70 = 4 modules.

Number of storage batteries:

Each battery used has 100 Ahr capacity, for maximum battery life it shouldn't discharge more than 80 % of its total storage (i.e 80 Ahr).

Number of batteries required to run the system for 1.5 day (one night + one full day) = [1.5 * peak hours per day * modules output power / battery nominal voltage] / 80 = [(1.5 * 7 * (4 * 70)) / 12] / 80 = 3 batteries.

In addition to the previous a solar charge controller (regulator) that can handle the output current of all modules, is needed to regulate the voltage and current coming from the solar panels going to the battery; most "12 volt" panels output is about 16 to 20 volts, so if there is no regulation the batteries will be damaged from overcharging.

In this experiment two modules and two batteries were used in series, because the inverter used is rated at 24 Volts, two batteries connected in series are needed. Also two modules are needed in series. The minimum number of modules and batteries were used to see the effect of power cut-off.

In this research the refrigerator worked only for half a day without solar power. This was noticeable when the refrigerator went off after one full night working on all mixtures used under solar power source. For that reason the system needed to recharge the batteries again to resume power.

4.6 Work Procedure

4.6.1 Primary Work

The refrigerator used in this research has an R-12 designed refrigerant. The original refrigerant was replaced by R-134a, and consequently the lubricant was changed from mineral oil to polyolester oil type based on the manufacturer instructions for the correct level of the lubricant.

In order to remove air, moisture and any gas dissolved in the lubricant, a purging process was performed before charging the new refrigerant. The refrigerator performance was studied using both mains electrical and solar electrical sources, long experiments were adopted. The following refrigerants were used:

- 1. R-134a.
- 2. LPG.
- 3. 70% propane and 30% butane.
- 4. 50% propane and 50% butane.
- 5. Propane.

اکم للاستشارات

4.6.2 Experimental Work

All experiments were scheduled to use hot water load as follows:

One kg of hot water at a temperature of 85°C contained in a tin container (with mass of 0.155 kg and 0.227 kJ/kg.°C specific heat). A thermocouple was inserted in the load, which was placed inside the refrigerator compartment (the refrigerator thermostat was switched to the maximum value to achieve fast cooling). A rapid increase of T_e was noticed, then slow decrease until load temperature reaches a low limit again.

The refrigerator runs for one day on electrical power and two days on solar power, during each day and at incremental number of minutes; the temperatures at the previously prescribed locations were recorded, in addition to solar intensity, solar current from modules and current consumed by refrigerator.

To determine the optimum charge quantity of the HC mixture required by mass, the refrigerator was charged with six different masses (20, 30, 40, 50, 60, 70g) of LPG in separate experiments. Then COP was calculated at each charge. Figure 4.5 below show that the optimum COP was at 40g charge of LPG, so this charge quantity was taken to be the optimum charge quantity for all refrigerant compositions used in this research.

Figure 4.5. Coefficient of performance vs. LPG charge quantity

Chapter Five

MATHEMATICAL ANALYSIS

5.1 Introduction

The vapor compression cycle, shown in Figure 5.1 as T-s diagram includes:

- 1. Work input compression from compressor inlet point (1) at suction pressure to the discharge pressure at point (2), with certain isentropic efficiency.
- 2. Heat rejection at nearly constant pressure and condensation to saturated liquid from point (2) to point (3).
- Expansion with throttling at constant enthalpy from condenser exit point (3) down to the evaporator pressure at point (4).
- 4. Heat addition at nearly constant pressure leads to complete evaporation and to compressor suction at point (1).

In this cycle the working pressures were determined from the saturation properties of the refrigerant, also mass flow rate can be determined using cooling load and latent heat of evaporation.

The actual vapor compression cycle deviates from the ideal one, due to that the pressure drop of the refrigerant in the condenser, evaporator, piping and valves passages in compressor is mostly due to friction, momentum change, liquid vapor stratification and spring loading of compressor. Also the actual compression process is hardly isentropic due to the losses by friction and heat transfer. To ensure that liquid is at outlet (at elevated ambient temperatures) the condenser is usually oversized; this will sub-cool the liquid.

5.2 Measured data

Appendix A lists all data recorded and calculations results of this work. Temperature readings were in (°C), pressure readings in (MPa), time readings in (minutes), current readings in (Ampere), voltage readings in (Volts) and solar intensity in W/m².

5.3 Mathematical calculations

Enthalpy calculations

Enthalpies need to be calculated at different locations on the cycle. These locations were compressor inlet and outlet, condenser middle and outlet, and evaporator (at the middle). Pressure and temperature used to state each enthalpy value. The case of the HCs the mixtures treated as ideal gas mixtures (no pressure drop occurs in condenser and evaporator). The propane/butane composition mixture can be described

by mass fraction or molar fraction. Table 5.1 shows the mole fractions of the constituents for: LPG (30% propane, 70% butane), 70% propane / 30% butane and 50% propane / 50% butane. For R-134a and propane, one can refer directly to the thermodynamic tables and charts in Appendix B, to get states and enthalpies.

Component	Mass	Molecular	Number of	Mole Fraction,	
	Fraction, mfi	Weight, mi	Moles, ni	yi	
	40g of LPG	(30% propane, 7	70% butane)		
Propane	0.3	44.1	0.27211	0.36	
Butane	0.7	58.12	0.48176	0.64	
40g of 70% propane, 30% butane (17g LPG + 23g Propane)					
Propane	0.7	44.1	0.6349	0.75	
Butane	0.3	58.12	0.2064	0.25	
40g of 50% propane, 50% butane (29g LPG + 11g Propane)					
Propane	0.5	44.1	0.45351	0.57	
Butane	0.5	58.12	0.34411	0.43	

 Table 5.1. Components mole fraction for each mixture used

For propane / butane mixture the mass fraction method was used to find enthalpy (h), at any state as follows:

$$h = mf_p * h_p + mf_b * h_b \tag{5.1}$$

where, h_p and h_b are enthalpies of propane and butane respectively, mf_p and mf_b are mass fractions of propane and butane respectively.

Partial pressures of the constituents were calculated using total pressure by using the mole fraction of each one as follows:

$$P_p = y_p + P \tag{5.2}$$

$$P_b = y_b + P \tag{5.3}$$

where, P_p and P_b are partial pressures of propane and butane respectively, y_p and y_b are mole fractions of propane and butane respectively, P is the total pressure of the mixture which is calculated as that evaporation pressure (P_1) is equal to the saturation pressure at evaporator temperature, and condensation pressure (P_2) is equal to the saturation pressure at condenser middle temperature, the calculation of total pressure P for the mixture is done by using multiplying each component partial pressure (based on the previous assumption) by its mole fraction for that composition, then both components are added together to give total pressure P. Adiabatic throttling process was assumed in the capillary tube so the enthalpy of the mixture at condenser exit is equal to that at evaporator inlet.

Refrigeration effect and capacity calculations

Refrigerant flows as a liquid through the evaporator then it boils by absorbing heat from refrigerator inside space. The quantity of this heat, in kJ per kg of refrigerant circulated, is named refrigeration effect (q_{ref}), which depends on the temperature of the refrigerant leaving the evaporator and that entering the capillary tube (equal to that entering the evaporator as assumed), and given by:

$$q_{ref} = h_1 - h_4 \tag{5.4}$$

where, h_1 and h_4 are the refrigerant enthalpies (kJ/kg) leaving and entering the evaporator respectively.

Refrigeration capacity (Q_{ref}) is the rate of heat removed in (kW) from a refrigerated space by the evaporator, which depend on the mass flow rate of refrigerant (m) and refrigerating effect, and given by:

$$Q_{ref} = m^* q_{ref} \tag{5.5}$$

where Q_{ref} is the refrigeration capacity in kW, m is the refrigerant mass flow rate in kg/s and q_{ref} is the refrigerating effect (kJ/kg).

Refrigerant mass flow rate calculations

The mass of refrigerant which must be circulated per second, called mass flow rate, and given by:

$$m = Q_{ref} / q_{ref} \tag{5.6}$$

where *m* is the refrigerant mass flow rate in kg/s and q_{ref} is the refrigerating effect (kJ/kg), Q_{ref} is calculated here by measuring the heat removed by evaporator from the simulated load (1 kg of hot water in a tin container) in the refrigerator compartment using the equation:

$$Q_{ref} = [(M_w * Cp_w * \Delta T_w) + (M_{co} * Cp_{co} * \Delta T_{co}) + (M_{al} * Cp_{al} * \Delta T_{al}) + (M_A * Cp_A * \Delta T_A)]/\Delta t \quad (5.7)$$

where, M_w , M_{co} , M_{al} and M_A are the masses of water, container, aluminum freezer and air inside the compartment in kg respectively. Cp_w , Cp_{co} , Cp_{al} and Cp_A are the specific heats of water, container, aluminum freezer and air in kJ/kg.°C respectively. ΔT_w , ΔT_{co} , ΔT_{al} and ΔT_A are the temperature differences of water, container, aluminum freezer and air in °C respectively. Δt is the time interval in seconds.

Compression work and power consumption calculations

The increase in refrigerant enthalpy during compression process by the compressor known as compression work, and given by:

$$w = h_2 - h_1 \tag{5.8}$$

where, w is the compression work in kJ/kg and h_1 , h_2 are the refrigerant enthalpies at compressor inlet and exit respectively.

The compressor power consumption is the product of refrigerant mass flow rate and compression work, as follow:

$$W = m^* w \tag{5.9}$$

where, W is the compressor power consumption in kW.

Coefficient of Performance (COP) calculations

Coefficient of Performance for a refrigeration system is an expression of the efficiency of the system; it is obtained by dividing the refrigeration capacity over the compressor power consumption, as follow:

$$COP = Q_{ref} / W = q_{ref} / w = (h_1 - h_4) / (h_2 - h_1)$$
(5.10)

5.4 Sample calculation

In this part, sample calculation will be made using readings for specific mixture (LPG) on electrical power; for the solar power side it will be the same procedure. Other mixtures and refrigerant can be treated similarly with minor changes in the case of pure refrigerants.

Readings listed in Table 5.2 are for LPG mixture for the refrigerator running on electrical power; these reading were taken after 30 minutes of inserting 85 °C, 1 kg of hot water as a load.

Charge quantity of LPG and propane:

Take the 40g of 70% propane, 30% butane as a sample, so the needed

Total mass of propane = 0.7*40 = 28 g.

Total mass of butane = 0.3*40 = 12 g.

To get these quantities, the following charges of LPG and propane must be charged:

LPG charged mass = 17 g (which contains 5 g propane and 12 g butane).

Propane charged mass = 23 g.

Reading (unit)	Symbol	Measured Value
Compressor Inlet Temperature (°C)	T_1	7
Compressor Outlet Temperature (°C)	T_2	58
Condenser Middle Temperature (°C)	T_{c}	44
Condenser Outlet Temperature (°C)	T_3	38
Evaporator Temperature (°C)	T_{e}	7
Water Temperature Difference (°C)	ΔT_w	34
Container Temperature Difference (°C)	ΔT_{co}	36
Aluminum Freezer Temperature Difference (°C)	ΔT_{al}	2
Air in Compartment Temperature Difference (°C)	ΔT_A	3
Time Period during the difference (min)	Δt	30

45

 Table 5.2. Sample of measured data

Total and partial pressure calculations (for LPG):

Total Evaporation Pressure: $P_1 = 0.36P_{1p} + 0.64P_{1b}$

 $P_{1p} = P_{sat}$ at $T_e = 7 + 273 = 280$ K, using propane tables and with interpolation,

 $P_{1p} = 0.583$ MPa.

 $P_{1b} = P_{sat}$ at $T_c = 44+273 = 317$ K, using butane tables and with interpolation,

 $P_{1b} = 0.133$ MPa, then

 $P_1 = 0.36*0.583 + 0.64*0.133 = 0.295$ MPa.

Total Condensation Pressure: $P_2 = 0.36P_{2p} + 0.64P_{2b}$

 $P_{2p} = P_{sat}$ at $T_e = 7 + 273 = 280$ K, using propane tables and with interpolation,

 $P_{2v} = 1.5$ MPa.

 $P_{2b} = P_{sat}$ at $T_c = 44+273 = 317$ K, using butane tables and with interpolation,

$$P_{2b} = 0.423$$
 MPa, then

$$P_2 = 0.36*1.5 + 0.64*0.423 = 0.811$$
 MPa.

Partial Pressure calculations:

 $P_{p1p} = 0.36*P_1 = 0.36*0.295 = 0.11$ MPa (partial pressure for propane at evaporation) $P_{p1b} = 0.64*P_1 = 0.64*0.295 = 0.18$ MPa (partial pressure for butane at evaporation) $P_{p2p} = 0.36*P_2 = 0.36*0.811 = 0.29$ MPa (partial pressure for propane at condensation) $P_{p2b} = 0.64*P_2 = 0.64*0.811 = 0.52$ MPa (partial pressure for butane at condensation)

The refrigerant assumed to be saturated vapor at compressor inlet, superheated at compressor outlet and saturated liquid at condenser outlet (no sub-cooling), also the enthalpy at evaporator inlet h4 assumed to be the equal to that at condenser outlet h3 (adiabatic throttling).

Mixture enthalpies calculation:

 $h_1 = 0.3 h_{1p} + 0.7 h_{1b}$, for LPG, using tables for propane and butane, $h_{1p} = (hg \text{ at } T_e = 280\text{K}) = 906 \text{ kJ/kg}$ $h_{1b} = (hg \text{ at } T_e = 280\text{K}) = 683.6 \text{ kJ/kg}$, then

 $h_1 = 0.3*906 + 0.7*683.6 = 750 \text{ kJ/kg}.$

 $h_2 = 0.3 h_{2p} + 0.7 h_{2b}$, using p-h diagrams for propane and butane (superheated), $h_{2p} = (h \text{ at } T_2 = 58+273 = 331 \text{ K}, \text{ with } P_{p2p} = 0.29 \text{ MPa}) = 1010 \text{ kJ/kg}$ $h_{2b} = (h \text{ at } T_2 = 58+273 = 331 \text{ K}, \text{ with } P_{p2b} = 0.52 \text{ MPa}) = 760 \text{ kJ/kg}, \text{ then}$

 $h_3 = h_4 = 0.3 h_{3p} + 0.7 h_{3b}$, using tables for propane and butane,

$$h_{3p} = (h_f \text{ at } T_3 = 38 + 273 = 311 \text{K}) = 624 \text{ kJ/kg}$$

 $h_{3b} = (h_f \text{ at } T_3 = 311 \text{K}) = 380 \text{ kJ/kg}$, then

 $h_3 = h_4 = 0.3*624 + 0.7*380 = 453 \text{ kJ/kg}.$

From eq. (5.7) and with:

 $M_w = 1$ kg, $M_c = 0.155$ kg, $M_{al} = \rho_{al} * V_{al} = \rho(L * W * t) = 2700(0.5*0.25*0.003) \approx 1$ kg and $M_A = \rho_A * V_A = 1.2 (0.076) = 0.092$ kg, $(V_A = 74 \text{ L} \approx 0.076 \text{ m}^3)$.

$$Q_{ref} = (((1*4.18*34)+(0.155*0.227*36)+(1*0.9*2)+(0.092*1.004*3))/(30*60))$$

= 0.08173 kW = 81.73 Watt.

$$q_{ref} = h_1 - h_4 = 750 - 453 = 297 \text{ kJ/kg.}$$

 $w = h_2 - h_1 = 835 - 750 = 85 \text{ kJ/kg}$
 $COP = q_{ref} / w = 297 / 85 = 3.49$
 $\dot{m} = Q_{ref} / q_{ref} = 81.73 / 297 = 0.28 \text{ g/s}$
 $W = \dot{m}^* w = 0.28^* 85 = 23.39 \text{ Watt.}$

Compressor - Photovoltaic Module and Total Efficiency:

The readings listed in Table 5.3 below are for R-143a on solar power (day 2), and were taken as a sample to calculate the compressor, photovoltaic module and total efficiencies:

Is, solar amperes (Amp)	Solar intensity (W/m2)	Iref, refrigerator amperes (Amp)	W, Compressor Power consumption (Watt)
3.2	805	0.53	34.07
3.4	855	0.53	21.41
3.7	967	0.54	14.26
3.7	1007	0.54	12.67
3.9	1060	0.54	11.65
3.9	1085	0.54	10.44
3.9	1130	0.54	9.27
3.7	1126	0.54	8.33
3.6	1086	0.54	7.74

48

 Table 5.3. Sample of measured data for R-134a on solar power (day 2)

Two photovoltaic modules total effective area (A) = 2 (length * width)

 $= 2 (0.765 * 0.45) = 0.69 \text{ m}^2$

Photovoltaic modules (PV) efficiency = $(I_s * V_n) / (\text{solar intensity}*A)$

For first line readings in upper table as a sample,

 $I_s = 3.2$ Amp., $V_n = nominal voltage of the modules (average) = 2 (14) = 28$ Volt.

Solar intensity = 805 W/m^2 , A = 0.69 m^2 , then

Photovoltaic modules efficiency = (3.2*28) / (805*.69) = 0.16 = 16 %

Compressor efficiency = Compressor Power / $(I_{ref} * V_{inv})$

Compressor power = 34.07 Watt, I_{ref} = 0.53 Amp., V_{inv} = inverter output voltage (to the refrigerator) = 230 Volt.

Compressor efficiency = $34.07 / (0.53 \times 230) = 0.279 = 27.9 \%$.

Total efficiency = Photovoltaic efficiency * Compressor efficiency

$$= 0.16 * 0.279 = 0.045 = 4.5 \%.$$

All calculations are listed in Table 5.4 below.

Is*Vnom, Watt	Solar intensity*A, Watt	PV efficiency %	Iref*Vinv, Watt	Compressor efficiency %	total efficiency %
89.6	556.7	16.1	121.9	27.9	4.5
95.2	591.3	16.1	121.9	17.6	2.8
103.6	668.7	15.5	124.2	11.5	1.8
103.6	696.4	14.9	124.2	10.2	1.5
109.2	733.1	14.9	124.2	9.4	1.4
109.2	750.3	14.6	124.2	8.4	1.2
109.2	781.5	14.0	124.2	7.5	1.0
103.6	778.7	13.3	124.2	6.7	0.9
100.8	751.0	13.4	124.2	6.2	0.8

The efficiency of the compressor decreases with time because the refrigerant mass flow rate decreases (which in turn decrease the nominator in the compressor efficiency equation), due to the decrease in evaporating temperature, Figure 5.2 below shows those efficiencies versus time.

 $T_a = \mathbf{27} \ ^{\mathbf{o}}\mathbf{C}$

Chapter Six

51

RESULTS AND DISCUSSION

6.1 Introduction

The results of this research and related curves will be presented and discussed in this chapter. As mentioned previously, the best COP was at 40g charge of LPG, and this charge quantity was taken to be the best charge quantity for all refrigerant compositions. The ambient temperature (T_a) was taken to be the average of all ambient temperature readings taken inside the laboratory at each interval and found to be 27 °C.

The original refrigerant (R-12) quantity was 70 g. This quantity was used for all mixtures, which means that the best charge quantity occurred at 57% (40g/70g) of the original refrigerant quantity.

In this chapter the analysis and discussion will be focused on R-134a and LPG as an alternative refrigerant. Performance of all mixtures will be compared and discussed. The COP, refrigeration capacity, mass flow rate and power consumption will be the parameters for comparison.

6.2 Cooling rate

A simulated load of 1 kg of hot water at temperature of 85 °C in a container made of tin (with mass of 0.155 kg and specific heat of 0.227 kJ/kg.°C) was placed inside the refrigerator compartment to study the variation of the load temperature with time for each mixture (on both electrical and solar power), also this will help in finding the refrigerant mass flow rate.

Figures 6.1 to 6.5 below show the load temperatures (load cooling), condensing temperatures, and evaporator temperatures; all versus time in minutes for both electrical and solar power source. On the same Figure the solar intensity during the experiment is presented on another y-axis, to illustrate the solar intensity in the period of experiment running. A rapid increase of T_e was noticed, then it slowly decreases until load temperature reaches a low limit again.

In average for all mixture at both electrical and solar power, the load cools to a temperature of 5 °C in 315 minutes (5.25 hours), this long time to achieve that temperature is due to the high temperature of the load, and also to the refrigerator specifications.

Figure 6.1. Temperature and solar intensity vs. time for R-134a using electrical and solar power (day 1)

Figure 6.2. Temperature and solar intensity vs. time for LPG using electrical and solar power (day 1)

Figure 6.3. Temperature and solar intensity vs. time for 50% propane & 50% butane using electrical and solar power (day 1)

Figure 6.4. Temperature and solar intensity vs. time for 70% propane & 30% butane using electrical and solar power (day 1)

للاستشارات

Figure 6.5. Temperature and solar intensity vs. time for propane using

electrical and solar power (day 1)

6.3 Power saving and consuming

The electrical power consumed by the refrigerator using electrical power was considered for all mixtures and compared with that of R-134a. It was found that when using R-134a, the refrigerator consumes 0.46 Amp. at 220 Volt. The nominal power was 57.7 Watt. For using LPG it consumes 0.43 Amp. at same voltage with nominal power of 53.9 Watt. Using 50% propane and 50% butane it consumes 0.49 Amp. with nominal power of 61.4 Watt. For 70% propane and 30% butane it consumes 0.5 Amp. with nominal power of 62.7 Watt and for propane it consumes 0.52 Amp. with nominal power of 65.2 Watt.

When comparing the previous values with that of R-134a, the following can be shown:

In case of LPG the refrigerator saves about 7% power, but for 50% propane and 50% butane it consumes 6% power more than that of R-134a, also for 70% propane and 30% butane it consumes 9% power more than that of R-134a, and the highest power consumed was in the case of using propane which consumes 13% more.

This results in that when increasing the percentage of propane in the mixture the power consumption increases until it reaches maximum when using propane, this is due to higher value of saturation pressures of propane, which in turn requires more compressor power to compress. Figure 6.6 below shows the percentage of power saving / consuming of each mixture compared to R-134a (-ve: saving, +ve: consuming more).

Figure 6.6. Percent of power saving (compared to R-134a) vs. T_e for all mixtures using electrical power at $T_c = 37^{\circ}$ C and $T_a = 27^{\circ}$ C

6.4 Performance parameters against Te, for R-134a and LPG

Performance parameters for R-134a and LPG, in this study included the following: COP, refrigeration capacity, mass flow rate and power consumption. These were presented separately and graphically using respective data and results against variable evaporating temperatures, T_e at constant T_c of 37 °C and constant T_a of 27 °C.

Those results are presented graphically in Figures 6.7 to 6.22, for R-134a and LPG separately at constant T_c . Other data and results were presented in Appendix A.

Coefficient of performance

As evaporating increases with constant condensing temperature, the COP will increase, this is due to the increase in enthalpy difference across the evaporator, and decrease in enthalpy difference across compressor. An efficient refrigeration system can be determined by COP, which indicate the whole system efficiency (the higher the COP the better the efficiency). These results were indicated by both refrigerants behavior shown by Figure 6.7 and 6.8 for R-134a using electrical and solar power respectively, and Figure 6.9 and 6.10 for LPG using electrical and solar power respectively.

It was found that, the LPG has a COP that is 6% higher compared to that of R-134a at constant T_c .

Refrigeration capacity

It is a measure for heat removal rate in refrigerator compartment, it was noticed that the refrigeration capacity increases as the evaporating temperature increases at a constant condensing temperature, this due to the increase in mass flow rate and enthalpy difference as evaporating temperature increases. These results were indicated by both refrigerants behavior shown by Figure 6.11 and 6.12 for R-134a using electrical and solar power respectively, and Figure 6.13 and 6.14 for LPG using electrical and solar power respectively.

Power consumption

The compressor power increases with increasing the evaporating temperature, because of mass flow rate increasing at a higher rate than of enthalpy decreasing. These results were indicated by both refrigerants behavior shown by Figure 6.15 and 6.16 for

R-134a using electrical and solar power respectively, and Figure 6.17 and 6.18 for LPG using electrical and solar power respectively.

Refrigerant mass flow rate

As evaporating temperature increases, the refrigerant mass flow rate increases at constant condensing temperature. This is due to the decrease in the refrigerant specific volume as evaporating temperature increases, which in turn increases the refrigerant mass flow rate. These results were indicated by both refrigerants behavior shown by Figure 6.19 and 6.20 for R-134a using electrical and solar power respectively, and Figure 6.21 and 6.22 for LPG using electrical and solar power respectively.

6.5 Performance parameters against Tc, for R-134a and LPG

Performance parameters for R-134a and LPG (COP, refrigeration capacity, mass flow rate and power consumption) were presented separately and graphically using respective data and results against variable condensation temperatures, T_c at constant T_e of -9 °C and constant T_a of 27 °C.

Those results are presented graphically in Figures 6.23 to 6.38, for R-134a and LPG separately at constant T_e . Other data and results were presented in Appendix A.

6.5.1 Coefficient of performance

When condensing temperature increases at constant evaporating temperature, the enthalpy difference across the evaporator will decrease and across the compressor will increase, this yield in decreasing the COP. These results were indicated by both

refrigerants behavior shown by Figure 6.23 and 6.24 for R-134a using electrical and solar power respectively, and Figure 6.25 and 6.26 for LPG using electrical and solar power respectively.

6.5.2 Refrigeration capacity

The refrigeration capacity decreases as condensing temperature increases at constant evaporating temperature. This is due to the increase of saturated liquid enthalpy when increasing the condensing temperature; this will decrease the enthalpy difference across the evaporator and also decreases refrigerant mass flow rate; where the multiplication of mass flow rate and enthalpy difference (state 1 and state 4) is the refrigeration capacity. These results were indicated by both refrigerants behavior shown by Figure 6.27 and 6.28 for R-134a using electrical and solar power respectively, and Figure 6.29 and 6.30 for LPG using electrical and solar power respectively.

6.5.3 Power consumption

When condensing temperature increases at constant evaporating temperature the compression work will increases in a rate higher than the decreasing in the refrigerant mass flow rate; this yield in almost increasing the compressor power consumption. These results were indicated by both refrigerants behavior shown by Figure 6.31 and 6.32 for R-134a using electrical and solar power respectively, and Figure 6.33 and 6.34 for LPG using electrical and solar power respectively.

6.5.4 Refrigerant mass flow rate

As condensing temperature increases at constant evaporating temperature, the refrigerant mass flow rate decreases, because of the decrease in the refrigerant specific volume at the compressor outlet as condensing temperature increases. These results were indicated by both refrigerants behavior shown by Figure 6.35 and 6.36 for R-134a using electrical and solar power respectively, and Figure 6.37 and 6.38 for LPG using electrical and solar power respectively.

Figure 6.7. COP vs. T_e for R-134a using electrical power at $T_c = 37$ °C and $T_a = 27$ °C

Figure 6.8. COP vs. T_e for R-134a using solar power at $T_c = 37$ °C and $T_a = 27$ °C

Figure 6.9. COP vs. T_e for LPG using electrical power at $T_c = 37$ °C and $T_a = 27$ °C

Figure 6.10. COP vs. T_e for LPG using solar power at $T_c = 37$ °C and $T_a = 27$ °C

Figure 6.11. Refrigeration capacity vs. T_e for R-134a using electrical power at

 $T_c = 37 \text{ °C} \text{ and } T_a = 27 \text{ °C}$

Figure 6.12. Refrigeration capacity vs. T_e for R-134a using solar power at

Figure 6.13. Refrigeration capacity vs. T_e for LPG using electrical power at

Figure 6.14. Refrigeration capacity vs. T_e for LPG using solar power at

```
T_c = 37 \text{ °C} \text{ and } T_a = 27 \text{ °C}
```


Figure 6.15. Compressor power vs. T_e for R-134a using electrical power at

Figure 6.16. Compressor power vs. T_e for R-134a using solar power at

```
T_c = 37 \text{ °C} \text{ and } T_a = 27 \text{ °C}
```


Figure 6.17. Compressor power vs. T_e for LPG using electrical power at

Figure 6.18. Compressor power vs. T_e for LPG using solar power at

```
T_c = 37 \ ^{\circ}\text{C} and T_a = 27 \ ^{\circ}\text{C}
```


Figure 6.19. Mass flow rate vs. T_e for R-134a using electrical power at

 $T_c = 37 \text{ °C}$ and $T_a = 27 \text{ °C}$

Figure 6.20. Mass flow rate vs. T_e for R-134a using solar power at

```
T_c = 37 \ ^{\circ}\text{C} \text{ and } T_a = 27 \ ^{\circ}\text{C}
```


Figure 6.21. Mass flow rate vs. T_e for LPG using electrical power at

```
T_c = 37 \text{ °C} and T_a = 27 \text{ °C}
```


Figure 6.22. Mass flow rate vs. T_e for LPG using solar power at

```
T_c = 37 \ ^{\circ}\text{C} \text{ and } T_a = 27 \ ^{\circ}\text{C}
```


Figure 6.23. COP vs. T_c for R-134a using electrical power at

 $T_e = -9 \ ^{\circ}\mathrm{C}$ and $T_a = 27 \ ^{\circ}\mathrm{C}$

Figure 6.24. COP vs. T_c for R-134a using solar power at $T_e = -9$ °C and $T_a = 27$ °C

Figure 6.25. COP vs. T_c for LPG using electrical power at $T_e = -9$ °C and $T_a = 27$ °C

Figure 6.26. COP vs. T_c for LPG using solar power at $T_e = -9$ °C and $T_a = 27$ °C

73

Figure 6.27. Refrigeration capacity vs. T_c for R-134a using electrical power at

Figure 6.28. Refrigeration capacity vs. T_c for R-134a using solar power at

$$T_e = -9 \text{ °C}$$
 and $T_a = 27 \text{ °C}$

Figure 6.29. Refrigeration capacity vs. T_c for LPG using electrical power at

Figure 6.30. Refrigeration capacity vs. T_c for LPG using solar power at

```
T_e = -9 \ ^{\circ}\mathrm{C} and T_a = 27 \ ^{\circ}\mathrm{C}
```


Figure 6.31. Compressor power vs. T_c for R-134a using electrical power at $T_e = -9$ °C and $T_a = 27$ °C

Figure 6.32. Compressor power vs. T_c for R-134a using solar power at

```
T_e = -9 \ ^{\circ}\mathrm{C} and T_a = 27 \ ^{\circ}\mathrm{C}
```


Figure 6.33. Compressor power vs. T_c for LPG using electrical power at

Figure 6.34. Compressor power vs. T_c for LPG using solar power at

 $T_e = -9 \ ^{\circ}\mathrm{C}$ and $T_a = 27 \ ^{\circ}\mathrm{C}$

Figure 6.36. Mass flow rate vs. T_c for R-134a using solar power at

```
T_e = -9 \ ^{\circ}\mathrm{C} and T_a = 27 \ ^{\circ}\mathrm{C}
```


 $T_e = -9 \ ^{\circ}\mathrm{C}$ and $T_a = 27 \ ^{\circ}\mathrm{C}$


```
T_e = -9 \ ^{\circ}\mathrm{C} and T_a = 27 \ ^{\circ}\mathrm{C}
```


6.6 Comparison of the performance of all mixtures with R-134a

For all mixtures the COP, refrigeration capacity, power consumption and refrigerant mass flow rate were presented graphically against evaporation temperature T_e , at constant T_c , when using both electrical and solar power.

The COP is presented in Figure 6.39 and 6.40 against T_e , for electrical and solar power respectively. Refrigeration capacity is presented in Figure 6.41 and 6.42 against T_e , for electrical and solar power respectively. Power consumption is presented in Figure 6.43 and 6.44 against T_e , for electrical and solar power respectively. Refrigerant mass flow rate is presented in Figure 6.45 and 6.46 against T_e , for electrical and solar power respectively.

6.6.1 Coefficient of performance

For all mixtures, it was noticed that as evaporating temperature increases with constant condensing temperature, the COP will increase. These results were indicated by refrigerants behavior shown by Figure 6.39 and 6.40 when using electrical and solar power respectively. From those Figures it can be noticed that the highest COP was for LPG, followed by R-134a, 50% propane / 50% butane, 70% propane / 30% butane and the lowest COP was when using pure propane.

In average and compared to COP of R-134a at constant Tc, the LPG gave a COP about 6% higher, but for 50% propane / 50% butane it was 10% lower, also for 70% propane / 30% butane it was 19% lower, then the lowest COP was when using pure propane which gave 32% lower than R-134a COP.

This yield the result that when increasing the percentage of propane in the mixture the power consumption increases (COP decreases) until reach it maximum when use propane, this is due to the high pressure of propane, which in turn require more compressor power to compress.

6.6.2 Refrigeration capacity

For all mixtures it was noticed that the refrigeration capacity increases as the evaporating temperature increases at a constant condensing temperature. These results were indicated by refrigerants behavior shown by Figure 6.41 and 6.42 when using electrical and solar power respectively. From those Figures it can be noticed that the highest refrigeration capacity was for pure propane, followed 70% propane / 30% butane, R-134a, LPG, and the lowest refrigeration capacity was when using 50% propane / 50% butane.

6.6.3 **Power consumption**

The compressor power increases with increasing the evaporating temperature, for all mixtures. These results were indicated by refrigerants behavior shown by Figure 6.43 and 6.44 when using electrical and solar power respectively. From those Figures it can be noticed that the highest power consumption was for pure propane, followed 70% propane / 30% butane, R-134a, LPG, and the lowest power consumption was when using 50% propane / 50% butane.

6.6.4 Refrigerant mass flow rate

As evaporating temperature increases, the refrigerant mass flow rate increases at constant condensing temperature, for all mixtures. These results were indicated by refrigerants behavior shown by Figure 6.45 and 6.46 when using electrical and solar power respectively. From those Figures it can be noticed that the highest refrigerant mass flow rate was for R-134a, followed by pure propane, 70% propane / 30% butane, LPG, and the lowest refrigerant mass flow rate was when using 50% propane / 50% butane.

82

Figure 6.39. COP vs. T_e for all mixtures using electrical power at

 $T_c = 37 \text{ °C}$ and $T_a = 27 \text{ °C}$

Figure 6.40. COP vs. T_e for all mixtures using solar power at

 $T_c = 37 \text{ °C}$ and $T_a = 27 \text{ °C}$

Figure 6.41. Refrigeration capacity vs. T_e for all mixtures using electrical power at

Figure 6.42. Refrigeration capacity vs. T_e for all mixtures using solar power at $T_c = 37 \text{ °C}$ and $T_a = 27 \text{ °C}$

Figure 6.43. Compressor power vs. T_e for all mixtures using electrical power at

Figure 6.44. Compressor power vs. T_e for all mixtures using solar power at

```
T_c = 37 \text{ °C} and T_a = 27 \text{ °C}
```


Figure 6.45. Mass flow rate vs. T_e for all mixtures using electrical power at

Figure 6.46. Mass flow rate vs. T_e for all mixtures using solar power at

$$T_c = 37 \text{ °C}$$
 and $T_a = 27 \text{ °C}$

Chapter Seven

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

In this work the performance study of a solar refrigerator using a mixture of propane and butane with different ratios as a replacement to R-134a refrigerant was studied experimentally.

The mixtures used were LPG, 70% propane and 30% butane, 50% propane and 50% butane and pure propane; the refrigerator was tested without any modifications using electrical and solar power. The performance of the mixtures was compared to that of R-134a, and the following conclusions were deduced:

- 1. The performance of LPG mixture was fairly close to that of R-134a, then the performance was degraded down while raising the propane percentage in the mixture until the use of pure propane, which gave the lowest performance compared to R-134a.
- The highest COP value recorded was 3.33, 3.49, 3.13, 3.09 and 2.54 for R-134a, LPG, 50% propane / 50% butane, 70% propane / 30% butane and pure propane respectively.
- 3. Compared to COP of R-134a at constant Tc, the LPG gave a COP about 6% higher, but 50% propane and 50% butane was 10% lower than that of R-134a, also 70% propane and 30% butane was 19% lower than that in R-134a, then the lowest COP was in the case of propane which gave 32% lower than R-134a COP.

- 4. The lowest evaporator temperature recorded was -10 °C, -9 °C, -4 °C, -9 °C and -15 °C for R-134a, LPG, 50% propane / 50% butane, 70% propane / 30% butane and pure propane respectively.
- 5. In case of using LPG the refrigerator saves about 7% of power, but for 50% propane and 50% butane it consumes 6% of power more than in R-134a, also for 70% propane and 30% butane it consumes 9% power more than in R-134a, then the most power consumed than in R-134a was in the case of propane which consumes 13% more.
- 6. It was noticed that after running for 17 hours, an ice formation occurs in the load when only using propane as a refrigerant, the ice layer was about 2 cm in thickness. A faster cooling (high cooling rate) was noticed when using propane as refrigerant, compared to other mixtures, also it gives the lowest evaporator temperature $T_e = -15$ °C among all other mixtures.
- 7. The overall performance when using solar power was close to that when using electrical power, taking into consideration the modules and storage batteries required for such equipment and the period that the system need to run on the batteries only without solar power.
- 8. The maximum recorded photovoltaic-modules efficiency was 16% which is within the actual range of infield used modules, which depend on the type of each one.
- The refrigerator needs no modifications or components replacement to run with these mixtures; the only need is to replace the old lubricant oil for R-134a (polyolester) by the mineral oil lubricant type.
- During the period of running the experiment, no leakage or other effects were detected.

11. Since they have no side effect on ozone layer, also they have low effect on the global warming phenomena; and because they are locally available, low cost and satisfactory efficient; the propane and butane mixtures specially LPG (30% propane and 70% butane) are attractive substitutes to R-134a in domestic refrigerators running on either domestic electrical power or solar power source.

7.2 Recommendations

During the experimental procedures and after data analysis, the following recommendations could be taken into consideration for any future work related to this research topic:

- The LPG (30% propane and 70% butane) is the recommended mixture between the used mixtures, to replace R-134a in small refrigeration systems.
- Due to the result that the highest compressor efficiency recorded was 28%, it is recommended to use new refrigerators. To overcome any deficiencies or losses; then to get correct judgments.
- 3. The use of P.V around peak output hours of solar intensity are relatively high in this part of the world (about 7 hours in summer in average), so the use and utilization of solar power among all applications (especially inhouse) is attractive and recommended.
- 4. Large refrigeration and air-conditioning systems should be tested and investigated using propane / butane mixtures inline with the usage of solar power.
- 5. Each component efficiency in solar system need to be investigated separately to enhance the whole system performance.

REFERENCES

- Akash, B. A. and Said S. A. (2003), Assessment of LPG as a possible alternative to R-12 in domestic refrigerators. Energy conversion and Management, 44, 381-388.
- American Society of Heating Refrigeration and Air-conditioning Engineers (1993), ASHRAE Handbook of Fundamentals. Atlanta.
- Devotta, S., Wagmare, A. V., Sawant N. N. and Domkundwar, B. M. (2001), Alternatives to HFC-22 for air conditioners. Applied Thermal Engineering, 21, 703-715.
- Driessen, J. L., Pereira, R.H., Thiessen, M. R. and Lunardi, M. A. (1994), Hydrocarbon Refrigerants as Substitutes For CFC-12 in a Domestic Refrigeration System, Proceedings of the New Application of Natural Working Fluids in Refrigeration and Air Conditioning, Hanover, Germany, 561-570.
- Habash, A. N. (1994), Performance of Propane/Butane (LPG) Mixture as a Refrigerant for Use in Domestic Refrigerators. M. Sc. Thesis, University of Jordan, Amman, Jordan.
- Hammad, M. A. and Alsaad, M. A. (1999), The use of Hydrocarbon Mixtures as Refrigerants in Domestic Refrigerators. Journal of Applied Thermal Engineering, 19, 1181-1189.
- James, R. W. and Missenden, J. F. (1992), The Use of Propane in Domestic Refrigerators. International Journal of Refrigeration, 15 (5), 299-306.
- Kanbour. S., Abdul-kader, F. and Hussain, R. (1997), Experimental Study Using R-290 in a simple R-12 Refrigerating System, Second Jordanian international conference for mechanical engineering, Amman, Jordan, 553-569.

- Lee, Y. S. and Su, C. C. (2002), Experimental studies of isobutene (R600a) as refrigerant in domestic refrigeration system. Applied Thermal Engineering, 22, 507-519.
- Lorentzen, G. (1994), The Use of Natural Refrigerant. International Journal of Refrigeration, 18 (3), 190-197.
- Richardson, R. N. and Butterworth, J. S. (1995), The Performance of Propane / Isobuatne Mixtures in a Vapor-Compression Refrigeration System.
 International Journal of Refrigeration, 18 (1), 58-62.
- Ritter. T. J. and Colbourne, D. 1998, Quantitative Risk Assessment: Hydrocarbon Refrigerants, Natural Working Fluids 98, IIR-Gustav Lorentzen Conference, Oslo, Norway, 581-591.
- Rivis, E. and Bidone, A. (1994), Isobutane/Propane Mixture: Comparison with Traditional and Non-Traditional Refrigerants, Proceedings of the CFCs, The Day After, Padova, Italy, 345-353.
- Sekhar, S. J. and Lal, D. M. (2005), HFC134a/HC600a/HC290 mixture a retrofit for CFC12 system. International Journal of Refrigeration, 28, 735-743.
- Vollmer, D. and Findessen, R. (1994), Calculation of Thermodynamic and Thermodynamical properties of the Binary Mixture Propane/Isobutane, Proceedings of the New Application of Natural Working Fluids in Refrigeration and Air Conditioning, Hanover, Germany, 119-130.

APPENDICES

APPENDIX A: Data and ResultsAPPENDIX B: Saturated Properties for R-134aSuperheated Properties for R-134aSaturated Properties for PropaneSaturated Properties for ButanePressure-Enthalpy diagram for PropanePressure-Enthalpy diagram for Butane

APPENDIX A

Data and Results

Table A.1 R-134a on electrical power (starting at 09:25 AM on

	DATA											
Δt (min)	T1 (°C)	T2 (°C)	T3 (°C)	T4 (°C)	T5 (°C)	T6 (°C)	T7 (°C)	Ta (°C)	Iref (Amp)			
30	3	66	44	39	3	18	47	27	0.46			
60	0	62	38	33	0	13	33	26	0.44			
90	-5	60	36	32	-5	10	25	26	0.44			
120	-7	56	33	30	-7	8	19	26	0.43			
150	-9	55	32	29	-9	6	15	25	0.43			
180	-9	54	32	29	-9	5	12	25	0.45			
210	-10	54	32	29	-10	4	9	25	0.45			
240	-9	58	36	32	-9	4	8	25	0.45			
270	-9	59	35	32	-9	5	7	25	0.45			

September 23rd) with 1 liter of hot water at 86 °C

RESULTS											
P1 (MPa)	P2 (MPa)	h1 (kJ/kg)	h2 (kJ/kg)	h3 (kJ/kg)	СОР	m' (g/s)	W (Watt)	Qref (Watt)			
0.33	1.13	249	295	105	3.13	0.67	30.72	96.18			
0.29	0.96	247	294	96	3.21	0.42	19.80	63.60			
0.24	0.91	244	293	94	3.06	0.32	15.62	47.83			
0.23	0.84	244	290	91	3.33	0.26	11.85	39.41			
0.21	0.82	242	289	90	3.23	0.22	10.40	33.62			
0.21	0.82	242	289	90	3.23	0.19	9.03	29.20			
0.2	0.82	241	289	90	3.15	0.17	8.30	26.11			
0.21	0.91	242	291	94	3.02	0.16	7.64	23.08			
0.21	0.89	242	293	94	2.90	0.14	7.16	20.77			

							DA	ТА				
Δt min	T1 ℃	T2 ℃	T3 ℃	T4 ⁰C	Т5 °С	T6 ℃	Т7 °С	Ta ⁰C	Iref Amp	Solar Intensity W/m²	Isolar Amp	Battery Voltage Volt
30	3	69	43	38	3	17	47	23	0.51	622	2.6	24.5
60	-1	66	39	35	-1	12	32	23	0.5	871	3.6	24.7
90	-5	66	38	35	-5	9	24	24	0.5	970	3.8	24.8
120	-7	64	35	32	-7	8	19	23	0.49	1120	4	24.4
150	-7	65	38	35	-7	6	15	24	0.49	1194	4.2	24.9
180	-7	66	37	34	-7	6	12	24	0.49	1222	4.4	25
210	-7	66	37	34	-7	6	10	26	0.49	1280	4.4	25.2
240	-7	66	37	34	-7	5	8	26	0.49	1300	4.4	25.2
270	-9	63	34	31	-9	4	7	24	0.49	1275	4.4	25.1
300	-9	63	36	33	-9	3	6	24	0.49	1220	3.5	24.8
330	-9	63	36	33	-9	3	5	25	0.49	1170	3.3	24.6

Table A.2 R-134a on solar power (starting at 08:15 AM on September

24^{th}) with 1	liter	of hot	water	at 84	°C
---------------------------	-------	--------	-------	-------	----

	RESULTS											
P1 MPa	P2 MPa	h1 kJ/kg	h2 kJ/kg	h3 kJ/kg	СОР	m' g/s	W Watt	Qref Watt				
0.33	1.1	249	301	103	2.81	0.63	32.73	91.89				
0.28	0.99	247	297	99	2.96	0.42	21.09	62.43				
0.24	0.96	244	298	99	2.69	0.33	17.60	47.25				
0.23	0.89	244	299	94	2.73	0.25	13.98	38.13				
0.23	0.96	244	301	99	2.54	0.22	12.74	32.40				
0.23	0.94	244	300	97	2.63	0.19	10.73	28.17				
0.23	0.94	244	300	97	2.63	0.17	9.45	24.81				
0.23	0.94	244	300	97	2.63	0.15	8.50	22.30				
0.21	0.86	242	297	93	2.71	0.14	7.46	20.20				
0.21	0.91	242	296	96	2.70	0.13	6.81	18.42				
0.21	0.91	242	296	96	2.70	0.12	6.27	16.96				

	DATA											
Δt min	T1 °C	T2 °C	T3 °C	T4 °C	T5 °C	T6 °C	T7 °C	Ta °C	Iref Amp	Solar Intensity W/m²	Isolar Amp	Battery Voltage Volt
30	3	63	45	41	3	15	36	26	0.53	805	3.2	24.2
60	0	64	40	37	0	12	30	27	0.53	855	3.4	24.4
90	1	62	42	37	1	11	24	27	0.54	967	3.7	24.5
120	-3	63	40	36	-3	8	21	26	0.54	1007	3.7	24.6
150	-6	64	37	33	-6	6	15	26	0.54	1060	3.9	24.7
180	-7	65	39	36	-7	5	12	26	0.54	1085	3.9	24.8
210	-8	64	37	34	-8	4	10	26	0.54	1130	3.9	24.8
240	-8	64	37	34	-8	4	8	26	0.54	1126	3.7	24.8
270	-8	65	38	35	-8	4	7	26	0.54	1086	3.6	24.8

Table A.3 R-134a on solar power (starting at 08:55 AM on September

25^{th}) with 1	liter o	f hot water	at 83	°C
---------------------------	---------	-------------	-------	----

	RESULTS											
P1 MPa	P2 MPa	h1 kJ/kg	h2 kJ/kg	h3 kJ/kg	СОР	m' g/s	W Watt	Qref Watt				
0.33	1.16	249	292	108	3.28	0.79	34.07	111.70				
0.29	1.02	247	297	102	2.90	0.43	21.41	62.10				
0.3	1.07	248	293	102	3.24	0.32	14.26	46.27				
0.26	1.02	245	295	100	2.90	0.25	12.67	36.75				
0.23	0.94	244	297	96	2.79	0.22	11.65	32.53				
0.23	0.99	244	297	100	2.72	0.20	10.44	28.37				
0.22	0.94	243	297	97	2.70	0.17	9.27	25.06				
0.22	0.94	243	297	97	2.70	0.15	8.33	22.52				
0.22	0.96	243	298	99	2.62	0.14	7.74	20.28				

j

للاستشارات

				D	АТА				
Δt (min)	T1 (°C)	T2 (°C)	T3 (°C)	T4 (°C)	T5 (°C)	T6 (°C)	T7 (°C)	Ta (°C)	Iref (Amp)
30	7	58	44	38	7	23	51	26	0.45
60	2	57	40	35	2	17	37	27	0.46
90	-4	56	37	32	-4	12	27	25	0.46
120	-7	55	36	32	-7	9	21	26	0.44
165	-7	52	34	30	-7	8	15	26	0.44
195	-7	52	33	29	-7	6	12	26	0.44
225	-6	53	34	30	-6	6	10	27	0.43
255	-6	53	34	31	-6	5	8	26	0.43
285	-9	52	34	30	-9	4	7	26	0.43

Table A.4 LPG on electrical power (starting at 08:27 AM on

September 9th) with 1 liter of hot water at 85 °C

RESULTS											
P1 (MPa)	P2 (MPa)	h1 (kJ/kg)	h2 (kJ/kg)	h3 (kJ/kg)	СОР	m' (g/s)	W (Watt)	Qref (Watt)			
0.295	0.811	750	835	453	3.49	0.28	23.39	81.73			
0.252	0.735	744	835	446	3.27	0.19	17.47	57.22			
0.208	0.681	736	835	438	3.01	0.16	15.54	46.77			
0.187	0.67	732	835	438	2.85	0.13	13.70	39.11			
0.187	0.633	732	825	433	3.22	0.10	9.59	30.85			
0.187	0.62	732	825	430	3.25	0.09	8.39	27.23			
0.193	0.633	733	825	433	3.26	0.08	7.42	24.19			
0.193	0.633	733	825	435	3.24	0.07	6.75	21.85			
0.174	0.633	729	825	433	3.08	0.07	6.48	19.98			

🟅 للاستشارات

i

	DATA											
Δt min	T1 ℃	T2 °C	Т3 °С	T4 °C	Т5 °С	Т6 °С	Т7 °С	Ta ℃	Iref Amp	Solar Intensity W/m ²	Isolar Amp	Battery Voltage Volt
30	11	62	54	49	11	26	51	31	0.55	455	1.8	25.4
60	5	66	48	44	5	20	37	31	0.54	526	2.1	25.5
90	3	69	48	44	3	17	28	31	0.54	684	2.7	25.6
120	-1	67	44	40	-1	14	23	31	0.53	815	3	26
150	-2	67	42	39	-2	12	19	32	0.54	868	3.2	26.4
180	-2	68	44	40	-2	12	16	31	0.53	922	3.3	26.6
210	-3	67	42	39	-3	11	14	32	0.53	951	3.3	26.7
240	-1	68	43	39	-1	11	13	32	0.53	997	3.4	26.7
270	-1	68	43	40	-1	10	12	32	0.53	1009	3.3	26.8
300	-2	67	43	39	-2	10	11	32	0.53	998	3.2	26.7
330	-2	66	42	38	-2	9	10	32	0.53	974	3.1	26.7

Table A.5 LPG on solar power (starting at 08:15 AM on September

7 th)	with	1 lite	r of hot	water	at 86	°C
/)	with	і ше	r of not	water	at 00	

RESULTS												
P1 (MPa)	P2 (MPa)	h1 (kJ/kg)	h2 (kJ/kg)	h3 (kJ/kg)	СОР	m' (g/s)	W (Watt)	Qref (Watt)				
0.33	1.03	756	838	483	3.33	0.31	25.18	83.84				
0.28	0.89	748	854	469	2.63	0.21	22.07	58.08				
0.26	0.89	745	854	469	2.53	0.17	18.11	45.86				
0.23	0.81	740	854	459	2.46	0.13	15.32	37.77				
0.23	0.77	738	854	456	2.43	0.11	13.25	32.22				
0.23	0.81	738	854	459	2.41	0.10	11.67	28.06				
0.21	0.77	737	854	456	2.40	0.09	10.34	24.83				
0.23	0.79	740	854	456	2.49	0.08	8.83	22.01				
0.23	0.79	740	854	456	2.49	0.07	7.97	19.86				
0.23	0.79	738	854	456	2.43	0.06	7.45	18.11				
0.23	0.77	738	854	453	2.46	0.06	6.78	16.65				

	DATA													
Δt min	T1 ℃	T2 °C	Т3 °С	T4 °C	Т5 °С	T6 °C	Т7 °С	Ta ℃	Iref Amp	Solar Intensity W/m ²	Isolar Amp	Battery Voltage Volt		
30	5	63	42	36	5	19	49	29	0.54	515	2.1	24.4		
60	1	59	39	34	1	15	36	28	0.54	618	2.5	24.4		
90	-4	57	37	33	-4	12	28	28	0.54	735	2.8	24.5		
120	-6	57	36	32	-6	10	22	28	0.54	835	3.2	24.6		
150	-6	59	37	33	-6	9	18	28	0.54	903	3.3	24.8		
180	-7	59	36	33	-7	8	15	29	0.53	966	3.5	24.9		
210	-6	61	39	36	-6	7	12	29	0.52	1014	3.6	25		
240	-7	60	38	34	-7	7	11	29	0.52	1061	3.6	25.1		
270	-7	56	35	31	-7	7	9	29	0.52	1074	3.6	25.1		
300	-7	57	36	33	-7	7	8	28	0.52	1071	3.5	25.1		
330	-9	57	36	33	-9	6	7	28	0.52	1052	3.3	25		

Table A.6 LPG on solar power (starting at 08:15 AM on September

8 th)	with	1	liter	of	hot	water	at 85	°C
0)	VV I U I I	T	IIICI	UI	πυι	water	atos	Ľ

RESULTS												
P1 (MPa)	P2 (MPa)	h1 (kJ/kg)	h2 (kJ/kg)	h3 (kJ/kg)	СОР	m' (g/s)	W (Watt)	Qref (Watt)				
0.28	0.77	748	845	448	3.09	0.30	28.77	88.97				
0.25	0.72	742	832	443	3.32	0.20	17.68	58.73				
0.21	0.68	736	832	440	3.08	0.15	14.63	45.10				
0.19	0.67	733	832	438	2.98	0.13	12.63	37.65				
0.19	0.68	733	832	440	2.96	0.11	10.80	31.96				
0.185	0.67	732	832	440	2.92	0.10	9.53	27.83				
0.19	0.72	733	845	448	2.54	0.09	9.67	24.59				
0.185	0.7	732	845	443	2.56	0.08	8.64	22.09				
0.185	0.65	732	832	435	2.97	0.07	6.73	19.98				
0.185	0.67	732	832	440	2.92	0.06	6.27	18.31				
0.175	0.67	729	832	440	2.81	0.06	6.03	16.93				

	DATA													
Δt (min)	T1 (°C)	T2 (°C)	T3 (°C)	T4 (°C)	T5 (°C)	T6 (°C)	T7 (°C)	Ta (°C)	Iref (Amp)					
30	14	68	50	41	14	26	49	29	0.5					
60	8	68	47	39	8	20	38	29	0.5					
90	4	66	42	34	4	16	30	31	0.5					
120	1	66	42	36	1	13	24	30	0.49					
180	-1	65	41	35	-1	12	20	28	0.49					
210	-2	64	38	33	-2	10	15	29	0.49					
240	-2	64	40	35	-2	9	12	29	0.48					
270	-3	64	39	35	-3	9	11	29	0.48					
300	-3	62	37	33	-3	8	10	30	0.48					
330	-3	65	40	36	-3	8	10	30	0.48					

Table A.7 50% propane/50% butane on electrical power (starting at

Δt (min)	T1 (°C)	T2 (°C)	T3 (°C)	T4 (°C)	T5 (°C)	T6 (°C)	T7 (°C)	Ta (°C)	Iref (Amp)
30	14	68	50	41	14	26	49	29	0.5
60	8	68	47	39	8	20	38	29	0.5
90	4	66	42	34	4	16	30	31	0.5
120	1	66	42	36	1	13	24	30	0.49
180	-1	65	41	35	-1	12	20	28	0.49
210	-2	64	38	33	-2	10	15	29	0.49
240	-2	64	40	35	-2	9 9	12 11	29	0.48
270	-3	64	39	35	-3			29	0.48
300	-3	62	37	33	-3	8	10	30	0.48
330	-3	65	40	36	-3	8	10	30	0.48
				RE	SULTS				
P1 (MPa)	P2 (MPa)	h1) (kJ/k	kg) (k.	h2 J/kg)	h3 (kJ/kg)	СОР	m' (g/s)	W (Watt)	Qref (Watt)
0.48	1.19	804	4 8	98	510	3.13	0.31	28.76	89.94
0.4	1.11	79	6 8	898	505	2.85	0.19	19.82	56.54
0.36	1	79 1	1 8	898	491	2.80	0.14	15.44	43.30
	1								

497

494

489

494

494

489

497

2.61

2.58

2.75

2.63

2.67

2.71

2.57

0.12

0.09

0.08

0.07

0.07

0.06

0.06

08:15 AM on September 17th) 1 liter of hot water at 85°C

		• • •
Ta (°C)	Iref (Amp)	soda
29	0.5	De
29	0.5	esis
31	0.5	The
30	0.49	of
28	0.49	ter
29	0.49	Cent
29	0.48	
29	0.48	dan
30	0.48	Jore
30	0.48	of .
		ity
		ers
		Inivers
W	Qref	f Univers
W (Watt)	Qref (Watt)	/ of Univers
W (Watt) 28.76	Qref (Watt) 89.94	rary of Univers
W (Watt) 28.76 19.82	Qref (Watt) 89.94 56.54	Library of Univers
W (Watt) 28.76 19.82 15.44	Qref (Watt) 89.94 56.54 43.30	l - Library of Univers
W (Watt) 28.76 19.82 15.44 13.78	Qref (Watt) 89.94 56.54 43.30 36.01	ved - Library of Univers
W (Watt) 28.76 19.82 15.44 13.78 10.08	Qref (Watt) 89.94 56.54 43.30 36.01 25.96	served - Library of Univers
W (Watt) 28.76 19.82 15.44 13.78 10.08 8.73	Qref (Watt) 89.94 56.54 43.30 36.01 25.96 23.99	Reserved - Library of Univers
W (Watt) 28.76 19.82 15.44 13.78 10.08 8.73 8.24	Qref (Watt) 89.94 56.54 43.30 36.01 25.96 23.99 21.66	hts Reserved - Library of Univers
W (Watt) 28.76 19.82 15.44 13.78 10.08 8.73 8.24 7.33	Qref (Watt) 89.94 56.54 43.30 36.01 25.96 23.99 21.66 19.56	Rights Reserved - Library of Univers
W (Watt) 28.76 19.82 15.44 13.78 10.08 8.73 8.24 7.33 6.58	Qref (Watt) 89.94 56.54 43.30 36.01 25.96 23.99 21.66 19.56 17.85	All Rights Reserved - Library of Univers
W (Watt) 28.76 19.82 15.44 13.78 10.08 8.73 8.24 7.33 6.58 6.39	Qref (Watt) 89.94 56.54 43.30 36.01 25.96 23.99 21.66 19.56 17.85 16.40	All Rights Reserved - Library of Univers

0.32

0.3

0.29

0.29

0.28

0.28

0.28

1

0.97

0.9

0.94

0.92

0.88

0.94

787

785

783

783

782

782

782

898

898

890

893

890

890

893

DATA															
Δt min	At minT1 °CT2 °CT3 														
30	12	69	46	37	12	22	50	26	0.53	480	2.4	25.4			
60	6	69	43	36	6	18	37	27	0.53	612	2.8	25.5			
90	2	70	41	36	2	15	28	27	0.53	740	3.2	25.9			
120	1	68	40	35	1	13	23	27	0.53	840	3.5	26.5			
150	-1	69	40	35	-1	12	20	28	0.53	936	3.7	26.9			
180	-1	69	40	35	-1	11	17	28	0.52	1014	3.7	27.8			
210	-2	68	39	35	-2	10	14	29	0.52	1070	3.5	28.3			
240	-2	68	39	35	-2	10	13	29	0.52	1086	3.4	28.3			
270	-2	68	40	36	-2	10	11	29	0.52	1090	3.3	28.3			
300	-2	69	40	36	-2	9	10	30	0.52	1090	3.3	28.3			
330	-2	68	39	35	-2	9	10	30	0.52	1040	3.3	27.3			

Table A.8 50% propane and 50% butane on solar power (starting at

							DA	IA					
Δt min	T1 ℃	T2 °C	T3 °C	T4 ℃	T5 ℃	T6 °C	T7 °C	Ta ℃	Iref Amp	Solar Intensit W/m ²	y Isolar Amp	Battery Voltage Volt	
30	12	69	46	37	12	22	50	26	0.53	480	2.4	25.4	
60	6	69	43	36	6	18	37	27	0.53	612	2.8	25.5	
90	2	70	41	36	2	15	28	27	0.53	740	3.2	25.9	
 120	1	68	40	35	1	13	23	27	0.53	840	3.5	26.5	
150	-1	69	40	35	-1	12	20	28	0.53	936	3.7	26.9	
180	-1	69	40	35	-1	11	17	28	0.52	1014	3.7	27.8	
210	-2	68	39	35	-2	10	14	29	0.52	1070	3.5	28.3	
240	-2	68	39	35	-2	10	13	29	0.52	1086	3.4	28.3	
270	-2	68	40	36	-2	10	11	29	0.52	1090	3.3	28.3	
300	-2	69	40	36	-2	9	10	30	0.52	1090	3.3	28.3	
330	-2	68	39	35	-2	9	10	30	0.52	1040	3.3	27.3	
						R	RESU	LTS					_
P1		P2		h1		h2	ł	3	COP	m'	W	Qref	
	\sim	(MDa	аLа	$T/l_{r} \sigma$	0-	I/lza)	10.1	$/l_{rg}$	COP		Watt)	(Watt)	

08:15 AM on September 15th) 1 liter of hot water at 86 °C

	RESULTS													
P1 (MPa)	P2 (MPa)	h1 (kJ/kg)	h2 (kJ/kg)	h3 (kJ/kg)	СОР	m' (g/s)	W (Watt)	Qref (Watt)						
0.45	1.09	801	900	499	3.05	0.31	30.28	92.36						
0.37	1	794	900	497	2.80	0.20	21.55	60.38						
0.33	0.97	790	900	497	2.66	0.16	17.31	46.12						
0.32	0.94	787	900	494	2.59	0.13	14.33	37.17						
0.31	0.94	785	900	494	2.53	0.11	12.40	31.37						
0.31	0.94	785	900	494	2.53	0.09	10.78	27.27						
0.29	0.92	783	900	494	2.47	0.08	9.77	24.12						
0.29	0.92	783	900	494	2.47	0.07	8.73	21.56						
0.29	0.94	783	900	497	2.44	0.07	7.96	19.47						
0.29	0.94	783	900	497	2.44	0.06	7.27	17.77						
0.29	0.92	783	900	494	2.47	0.06	6.60	16.31						

	DATA													
Δt min	T1 °C	T2 °C	Т3 °С	T4 °C	T5 ℃	T6 °C	T7 °C	Ta ℃	Iref Amp	Solar Intensity W/m ²	Isolar Amp	Battery Voltage Volt		
30	10	72	47	39	10	22	48	28	0.56	555	2.5	24.2		
60	6	71	43	36	6	19	36	29	0.56	664	2.8	24.3		
90	3	70	43	38	3	15	28	29	0.55	788	3.2	24.4		
120	1	70	42	37	1	14	23	29	0.55	890	3.5	24.6		
150	0	70	40	36	0	13	20	30	0.55	986	3.7	24.7		
180	0	70	42	37	0	12	17	30	0.55	1004	3.7	24.8		
210	-1	70	41	37	-1	12	15	30	0.5	1045	3.7	24.9		
240	-1	70	42	37	-1	11	14	30	0.5	1080	3.8	24.9		
270	-1	70	42	37	-1	11	12	30	0.5	1075	3.6	24.9		
300	-3	65	37	33	-3	10	12	30	0.5	1060	3.6	24.9		
330	-4	64	36	32	-4	9	11	30	0.5	1026	3.4	24.8		

Table A.9 50% propane and 50% butane on solar power (starting at

DATA													
Δt min	T1 °C	T2 °C	T3 °C	T4 °C	T5 °C	T6 °C	T7 °C	Ta °C	Iref Amp	Solar Intensity W/m ²	Isolar Amp	Battery Voltage Volt	
30	10	72	47	39	10	22	48	28	0.56	555	2.5	24.2	
60	6	71	43	36	6	19	36	29	0.56	664	2.8	24.3	
90	3	70	43	38	3	15	28	29	0.55	788	3.2	24.4	
120	1	70	42	37	1	14	23	29	0.55	890	3.5	24.6	
150	0	70	40	36	0	13	20	30	0.55	986	3.7	24.7	
180	0	70	42	37	0	12	17	30	0.55	1004	3.7	24.8	
210	-1	70	41	37	-1	12	15	30	0.5	1045	3.7	24.9	
240	-1	70	42	37	-1	11	14	30	0.5	1080	3.8	24.9	
270	-1	70	42	37	-1	11	12	30	0.5	1075	3.6	24.9	
300	-3	65	37	33	-3	10	12	30	0.5	1060	3.6	24.9	
330	-4	64	36	32	-4	9	11	30	0.5	1026	3.4	24.8	

08:25 AM on September 16th) 1 liter of hot water at 79 °C

RESULTS													
P1 (MPa)	P2 (MPa)	h1 (kJ/kg)	h2 (kJ/kg)	h3 (kJ/kg)	СОР	m' (g/s)	W (Watt)	Qref (Watt)					
0.43	1.11	799	908	505	2.70	0.27	29.69	80.09					
0.37	1	794	908	497	2.61	0.18	20.57	53.58					
0.35	1	790	908	502	2.44	0.14	16.81	41.02					
0.32	1	787	908	499	2.38	0.12	14.07	33.48					
0.31	0.94	786	908	497	2.37	0.10	11.94	28.29					
0.31	1	786	908	499	2.35	0.09	10.46	24.60					
0.31	0.97	785	908	499	2.33	0.08	9.31	21.65					
0.31	1	785	908	499	2.33	0.07	8.34	19.38					
0.31	1	785	908	499	2.33	0.06	7.53	17.51					
0.29	0.88	782	900	489	2.48	0.05	6.38	15.83					
0.28	0.86	781	900	486	2.48	0.05	5.87	14.56					

				D	АТА				
Δt (min)	T1 (°C)	T2 (°C)	T3 (°C)	T4 (°C)	T5 (°C)	T6 (°C)	T7 (°C)	Ta (°C)	Iref (Amp)
30	9	75	45	35	9	22	49	27	0.53
60	4	76	46	38	4	16	36	27	0.52
90	-1	71	40	34	-1	13	28	27	0.5
120	-5	65	34	29	-5	10	22	27	0.49
150	-7	65	36	32	-7	8	17	26	0.49
180	-8	64	35	30	-8	7	13	26	0.49
210	-8	66	36	31	-8	6	11	27	0.49
240	-8	65	36	32	-8	5	9	26	0.49
270	-9	63	33	30	-9	4	8	27	0.48
300	-9	64	35	30	-9	4	7	27	0.48
330	-9	65	34	30	_9	4	6	28	0.48

Table A.10 70% propane and 30% butane on electrical power (starting

DATA													
Δt (min)	T1 (°C)	T2 (°C)	T3 (°C)	T4 (°C)	T5 (°C)	T6 (°C)	T7 (°C)	Ta (°C)	Iref (Amp)				
30	9	75	45	35	9	22	49	27	0.53				
60	4	76	46	38	4	16	36	27	0.52				
90	-1	71	40	34	-1	13	28	27	0.5				
120	-5	65	34	29	-5	10	22	27	0.49				
150	-7	65	36	32	-7	8	17	26	0.49				
180	-8	64	35	30	-8	7	13	26	0.49				
210	-8	66	36	31	-8	6	11	27	0.49				
240	-8	65	36	32	-8	5	9	26	0.49				
270	-9	63	33	30	-9	4	8	27	0.48				
300	-9	64	35	30	-9	4	7	27	0.48				
330	-9	65	34	30	-9	4	6	28	0.48				
	RESULTS												

at 08:17AM on September 10th) 1 liter of hot water at 87 °C

RESULTS													
P1 (MPa)	P2 (MPa)	h1 (kJ/kg)	h2 (kJ/kg)	h3 (kJ/kg)	СОР	m' (g/s)	W (Watt)	Qref (Watt)					
0.5	1.26	842	961	543	2.51	0.32	38.33	96.31					
0.43	1.29	836	961	551	2.28	0.22	27.21	62.04					
0.37	1.12	830	958	540	2.27	0.16	20.81	47.15					
0.32	0.97	825	944	527	2.50	0.13	15.29	38.29					
0.3	1.02	823	944	534	2.39	0.11	13.84	33.06					
0.3	1	821	937	529	2.52	0.10	11.55	29.08					
0.3	1.02	821	944	532	2.35	0.09	10.94	25.70					
0.3	1.02	821	944	534	2.33	0.08	9.85	22.98					
0.29	0.95	820	934	529	2.55	0.07	8.16	20.84					
0.29	1	820	934	529	2.55	0.07	7.49	19.11					
0.29	0.97	820	944	529	2.35	0.06	7.45	17.48					

							D	АТА				
Δt min	T1 °C	T2 °C	T3 °C	T4 °C	Т5 °С	T6 °C	Т7 °С	Ta ℃	Iref Amp	Solar Intensity W/m ²	Isolar Amp	Battery Voltage Volt
30	7	75	45	35	7	21	49	27	0.58	585	2.2	24.4
60	2	76	43	36	2	15	34	27	0.58	705	2.7	24.4
90	-2	75	41	35	-2	12	27	27	0.57	808	3	24.5
120	-6	73	38	32	-6	10	21	27	0.56	902	3.3	24.5
150	-6	72	38	33	-6	8	16	27	0.56	978	3.6	24.6
180	-6	74	40	36	-6	7	13	27	0.56	1048	3.7	24.6
210	-6	75	40	36	-6	7	11	28	0.56	1090	3.8	24.7
240	-7	71	37	32	-7	6	9	28	0.56	1130	3.8	24.7
270	-7	72	38	34	-7	6	8	28	0.56	1150	3.7	24.7
300	-6	74	40	35	-6	5	7	28	0.56	1130	3.6	24.7
330	-8	69	34	30	-8	5	6	28	0.56	1088	3.5	24.6

Table A.11	70% propane	and 30% butane	on solar power	(starting at
------------	-------------	----------------	----------------	--------------

n	∆t nin	T1 ℃	T2 °C	Т3 °С	T4 °C	Т5 °С	Т6 °С	Т7 °С	Ta ℃	Iref Amp	Solar Intensit W/m ²	y Isola Amp	p Battery Voltage Volt
	30	7	75	45	35	7	21	49	27	0.58	585	2.2	24.4
(60	2	76	43	36	2	15	34	27	0.58	705	2.7	24.4
(90	-2	75	41	35	-2	12	27	27	0.57	808	3	24.5
1	20	-6	73	38	32	-6	10	21	27	0.56	902	3.3	24.5
1	50	-6	72	38	33	-6	8	16	27	0.56	978	3.6	24.6
1	80	-6	74	40	36	-6	7	13	27	0.56	1048	3.7	24.6
2	10	-6	75	40	36	-6	7	11	28	0.56	1090	3.8	24.7
2	40	-7	71	37	32	-7	6	9	28	0.56	1130	3.8	24.7
2	70	-7	72	38	34	-7	6	8	28	0.56	1150	3.7	24.7
3	00	-6	74	40	35	-6	5	7	28	0.56	1130	3.6	24.7
3	30	-8	69	34	30	-8	5	6	28	0.56	1088	3.5	24.6
								RES	SULT	S			
F	P1	1	P2		h1		h2		h3	COP	m'	W	Qref
	(MP	Pa)	(MPa	a)	(kJ/kg	g) (kJ/kg	g) (kJ/kg		(g/s)	(Watt)	(Watt)
	0.4	7	1.26	5	839		961		543	2.43	0.32	39.05	94.74
	0.4	1	1.2		833		961		545	2.25	0.22	27.98	62.96
	0.3	6	1.15	5	829		961		543	2.17	0.16	21.70	47.02

08:13 AM on September 11th)1 liter of hot water at 86 °C

RESULTS															
P1 (MPa)	P1P2h1h2h3COPm'WQrefMPa)(MPa)(kJ/kg)(kJ/kg)(kJ/kg)COPm'WQref(Watt)(Watt)(Watt)(Watt)(Watt)(Watt)														
0.47	1.26	839	961	543	2.43	0.32	39.05	94.74							
0.41	1.2	833	961	545	2.25	0.22	27.98	62.96							
0.36	1.15	829	961	543	2.17	0.16	21.70	47.02							
0.31	1.07	825	958	534	2.19	0.13	17.50	38.29							
0.31	1.07	825	958	537	2.17	0.11	15.10	32.70							
0.31	1.12	825	961	545	2.06	0.10	13.87	28.56							
0.31	1.12	825	961	545	2.06	0.09	12.19	25.11							
0.3	1.04	822	958	534	2.12	0.08	10.63	22.52							
0.3	1.07	822	958	540	2.07	0.07	9.82	20.37							
0.31	1.12	825	961	543	2.07	0.07	8.95	18.55							
0.3	0.97	821	951	529	2.25	0.06	7.59	17.05							

							D	ATA				
Δt min	T1 °C	T2 °C	T3 °C	T4 °C	Т5 °С	Т6 °С	Т7 °С	Ta ℃	Iref Amp	Solar Intensity W/m ²	Isolar Amp	Battery Voltage Volt
30	12	67	47	37	12	23	51	24	0.61	634	2.3	25.3
60	2	68	39	32	2	16	36	24	0.59	731	2.7	25.5
90	-4	68	37	32	-4	11	25	24	0.58	842	3.2	25.6
120	-5	66	34	29	-5	9	20	25	0.58	952	3.3	25.7
150	-6	67	34	29	-6	8	16	25	0.58	1018	3.6	25.9
180	-7	67	34	29	-7	7	12	24	0.58	1073	3.6	26.1
210	-8	66	33	29	-8	6	9	24	0.58	1124	3.7	26.4
240	-8	66	34	29	-8	5	8	24	0.58	1142	3.7	26.4
270	-8	67	35	30	-8	5	6	25	0.58	1134	3.6	26.4
300	-8	66	32	28	-8	5	5	25	0.58	1118	3.4	26.2
330	-9	64	31	27	-9	4	4	25	0.58	1060	3.4	26.2

Fable A.12 70%	propane and 30% b	butane on solar power	(starting at
-----------------------	-------------------	-----------------------	--------------

Δt min	T1 ℃	T2 °C	T3 °C	T4 ℃	T5 ℃	T6 ℃	Т7 °С	Ta ℃	Iref Amp	Solar Intensit W/m ²	y Isola Amp	r Battery Voltage Volt
30	12	67	47	37	12	23	51	24	0.61	634	2.3	25.3
60	2	68	39	32	2	16	36	24	0.59	731	2.7	25.5
90	-4	68	37	32	-4	11	25	24	0.58	842	3.2	25.6
120	-5	66	34	29	-5	9	20	25	0.58	952	3.3	25.7
150	-6	67	34	29	-6	8	16	25	0.58	1018	3.6	25.9
180	-7	67	34	29	-7	7	12	24	0.58	1073	3.6	26.1
210	-8	66	33	29	-8	6	9	24	0.58	1124	3.7	26.4
240	-8	66	34	29	-8	5	8	24	0.58	1142	3.7	26.4
270	-8	67	35	30	-8	5	6	25	0.58	1134	3.6	26.4
300	-8	66	32	28	-8	5	5	25	0.58	1118	3.4	26.2
330	-9	64	31	27	-9	4	4	25	0.58	1060	3.4	26.2
							RES	SULT	s			
P1	1	P2		h1	<u>,</u>	h2	、 <i>.</i>	h3	COP	m'	W	Qref
(MP	' a)	(MP:	a) ((kJ/kg	g) (kJ/kg	g) (kJ/kg)	(g/s)	(Watt)	(Watt)
0.5	4	1.32	2	845		941		548	3.09	0.31	29.37	90.87
0.4	4	1.13	;	833		941		534	2.77	0.20	21.61	59.84
	ſ											1

08:25 AM on September 14th) 1 liter of hot water at 87 °C

RESULTS													
P1 (MPa)	P2 (MPa)	h1 (kJ/kg)	h2 (kJ/kg)	h3 (kJ/kg)	COP	m' (g/s)	W (Watt)	Qref (Watt)					
0.54	1.32	845	941	548	3.09	0.31	29.37	90.87					
0.4	1.13	833	941	534	2.77	0.20	21.61	59.84					
0.34	1.04	826	944	534	2.47	0.17	20.15	49.86					
0.33	0.97	825	944	527	2.50	0.13	16.05	40.18					
0.31	0.97	825	944	527	2.50	0.11	13.68	34.26					
0.3	0.97	822	944	527	2.42	0.10	12.44	30.08					
0.3	0.95	821	944	527	2.39	0.09	11.24	26.86					
0.3	0.97	821	944	527	2.39	0.08	10.02	23.95					
0.3	1	821	944	529	2.37	0.07	9.12	21.66					
0.3	0.92	821	944	524	2.41	0.07	8.20	19.79					
0.29	0.91	820	934	521	2.62	0.06	6.94	18.20					

	DATA											
Δt (min)	T1 (°C)	T2 (°C)	T3 (°C)	T4 (°C)	T5 (°C)	T6 (°C)	T7 (°C)	Ta (°C)	Iref (Amp)			
30	3	89	52	49	3	17	46	28	0.64			
60	-7	79	42	39	-7	12	32	27	0.53			
90	-11	75	39	37	-11	9	24	27	0.5			
120	-11	74	39	37	-11	7	18	28	0.49			
150	-9	75	40	39	-9	6	14	27	0.49			
180	-8	74	44	41	-8	6	11	28	0.51			
210	-10	73	41	40	-10	4	9	27	0.49			
270	-9	75	43	42	-9	4	6	29	0.48			
300	-9	74	41	40	-9	3	4	27	0.47			
330	-11	74	40	38	-11	3	4	28	0.47			

Fable A.13 Propane o	n electrical j	power (starting at	08:20 AM on
-----------------------------	-----------------------	--------------------	-------------

September	18 th)	with 1	liter	of hot	water	at 85 '	°C
-----------	--------------------	--------	-------	--------	-------	---------	----

	RESULTS											
P1 (MPa)	P2 (MPa)	h1 (kJ/kg)	h2 (kJ/kg)	h3 (kJ/kg)	СОР	m' (g/s)	W (Watt)	Qref (Watt)				
0.39	1.79	902	1030	657	1.91	0.40	51.58	98.72				
0.38	1.43	891	1020	627	2.05	0.24	30.83	63.09				
0.33	1.34	886	1020	621	1.98	0.18	24.15	47.76				
0.33	1.34	886	1020	621	1.98	0.15	20.02	39.60				
0.36	1.37	888	1020	627	1.98	0.13	17.07	33.76				
0.37	1.5	889	1020	633	1.95	0.11	14.94	29.19				
0.34	1.4	887	1010	630	2.09	0.10	12.24	25.58				
0.36	1.47	888	1020	636	1.91	0.08	10.93	20.87				
0.36	1.4	888	1020	630	1.95	0.07	9.78	19.11				
0.33	1.37	886	1020	624	1.96	0.07	8.90	17.40				

	DATA											
Δt min	T1 ℃	T2 °C	Т3 °С	T4 °C	Т5 °С	T6 °C	T7 °C	Ta ℃	Iref Amp	Solar Intensity W/m ²	Isolar Amp	Battery Voltage Volt
30	5	77	50	48	5	18	48	25	0.57	660	2.7	25.2
60	-3	80	45	43	-3	12	33	25	0.53	775	3.1	25.4
90	-8	77	40	38	-8	9	24	26	0.51	885	3.4	25.5
120	-9	75	39	37	-9	7	17	25	0.51	967	3.7	25.6
150	-11	74	38	36	-11	5	13	24	0.51	1040	3.9	25.8
180	-13	70	36	34	-13	3	10	25	0.51	1100	4	26.1
210	-13	66	34	32	-13	3	7	25	0.51	1130	4	26.2
240	-13	68	36	33	-13	2	5	26	0.51	1148	4	26.3
270	-13	70	37	35	-13	1	4	26	0.51	1140	3.8	26.2
300	-15	70	37	36	-15	1	3	25	0.51	1115	3.6	26
330	-12	73	40	38	-12	1	2	25	0.51	1085	3.5	25.9

Table A.14 Propane on solar power (starting at 08:30 AM on

September 21 st) with 1	liter of	f hot water	at 87 °C
----------------------------	----------	----------	-------------	----------

	RESULTS											
P1 (MPa)	P2 (MPa)	h1 (kJ/kg)	h2 (kJ/kg)	h3 (kJ/kg)	СОР	m' (g/s)	W (Watt)	Qref (Watt)				
0.55	1.71	904	1010	654	2.36	0.38	40.48	95.47				
0.43	1.53	895	1020	639	2.05	0.25	30.93	63.35				
0.37	1.37	889	1020	624	2.02	0.19	24.79	50.14				
0.36	1.34	888	1020	621	2.02	0.16	20.69	41.86				
0.33	1.31	886	1020	618	2.00	0.13	17.79	35.58				
0.31	1.25	884	1010	613	2.15	0.11	14.42	31.00				
0.31	1.19	884	1000	607	2.39	0.10	11.55	27.58				
0.31	1.25	884	1000	610	2.36	0.09	10.47	24.72				
0.31	1.28	884	1010	616	2.13	0.08	10.46	22.24				
0.29	1.28	881	1010	618	2.04	0.08	9.98	20.35				
0.32	1.37	885	1010	624	2.09	0.07	8.90	18.58				

	DATA											
Δt min	T1 °C	T2 °C	T3 °C	T4 °C	Т5 °С	T6 °C	T7 °C	Ta ℃	Iref Amp	Solar Intensity W/m ²	Isolar Amp	Battery Voltage Volt
40	10	77	58	56	10	24	45	29	0.68	937	3.6	20.5
50	5	82	54	52	5	20	40	30	0.63	952	3.7	19.4
60	3	86	53	50	3	16	36	30	0.63	979	3.7	17.8
100	4	76	54	52	4	16	27	29	0.63	1025	3.8	21.7
110	-1	78	49	47	-1	13	25	30	0.6	1028	3.8	21
120	-7	82	50	48	-7	11	23	29	0.59	1000	3.7	20.7
150	-10	82	45	43	-10	8	18	29	0.56	1084	3.9	20.2
180	-12	82	43	41	-12	7	14	29	0.56	1061	3.7	19.3

Table A.15	Propane on	solar power	(starting	at 10:00 AM on
------------	-------------------	-------------	-----------	----------------

September 22 nd	with 1 liter of h	ot water at 75 °C
----------------------------	-------------------	-------------------

	RESULTS											
P1 (MPa)	P2 (MPa)	h1 (kJ/kg)	h2 (kJ/kg)	h3 (kJ/kg)	СОР	m' (g/s)	W (Watt)	Qref (Watt)				
0.64	2	909	1000	678	2.54	0.24	21.89	55.58				
0.55	1.87	904	1020	666	2.05	0.21	24.30	49.86				
0.39	1.83	902	1030	660	1.89	0.19	24.19	45.74				
0.53	1.87	903	1010	666	2.21	0.14	15.31	33.91				
0.46	1.68	897	1010	650	2.19	0.13	14.90	32.56				
0.34	1.71	891	1025	654	1.77	0.13	17.98	31.79				
0.34	1.53	887	1025	639	1.80	0.11	15.64	28.11				
0.32	1.47	885	1025	633	1.80	0.10	13.98	25.16				

ik

للاستشارات

APPENDIX B

Table B.1 Saturated Properties for R-134a

	Satu	rated Refrigerant R-1	34a Temperature Ta	ble	
		Spec. Volume	Internal Energ	Enthalpy	Entr
deg-C	MPa	m^3/kg	kJ/kg	kJ/kg	kJ/k
Tomp	Sat.	Sat. Sat.	Sat. Sat.	Sat. Sat.	Sat.
remp.	press.	liquid vapor	liquid vapor	liquid vapor	liquid
Τ ⁰ C	p_sat@	$v_f v_g$	$u_f u_g$	$h_f h_g$	s _f
-24	0.11160	0.00072 0.1728	19.21 213.57	19.29 232.85	0.0798
-22	0.12192	0.00073 0.1590	21.68 214.70	21.77 234.08	0.0897
-20	0.13299	0.00073 0.1464	24.17 215.84	24.26 235.31	0.0996
-18	0.14483	0.00073 0.1350	26.67 216.97	26.77 236.53	0.1094
-16	0.15748	0.00074 0.1247	29.18 218.10	29.30 237.74	0.1192
-12	0.18540	0.00074 0.1068	34.25 220.36	34.39 240.15	0.1388
-8	0.21704	0.00075 0.0919	39.38 222.60	39.54 242.54	0.1583
-4	0.25274	0.00076 0.0794	44.56 224.84	44.75 244.90	0.1777
0	0.29282	0.00077 0.0689	49.79 227.06	50.02 247.23	0.1970
4	0.33765	0.00078 0.0600	55.08 229.27	55.35 249.53	0.2162
8	0.38756	0.00078 0.0525	60.43 231.46	60.73 251.80	0.2354
12	0.44294	0.00079 0.0460	65.83 233.63	66.18 254.03	0.2545
16	0.50416	0.00080 0.0405	71.29 235.78	71.69 256.22	0.2735
20	0.57160	0.00081 0.0358	76.80 237.91	77.26 258.35	0.2924
24	0.64566	0.00082 0.0317	82.37 240.01	82.90 260.45	0.3113
26	0.68530	0.00083 0.0298	85.18 241.05	85.75 261.48	0.3208
28	0.72675	0.00083 0.0281	88.00 242.08	88.61 262.50	0.3302
30	0.77006	0.00084 0.0265	90.84 243.10	91.49 263.50	0.3396
32	0.81528	0.00084 0.0250	93.70 244.12	94.39 264.48	0.3490
34	0.86247	0.00085 0.0236	96.58 245.12	97.31 265.45	0.3584
36	0.91168	0.00085 0.0223	99.47 246.11	100.25 266.40	0.3678
38	0.96298	0.00086 0.0210	102.38 247.09	103.21 267.33	0.3772
40	1.0164	0.00087 0.0199	105.30 248.06	106.19 268.24	0.3866
42	1.0720	0.00087 0.0188	108.25 249.02	109.19 269.14	0.3960
44	1.1299	0.00088 0.0177	111.22 249.96	112.22 270.01	0.4054
48	1.2526	0.00089 0.0159	117.22 251.79	118.35 271.68	0.4243
52	1.3851	0.00091 0.0142	123.31 253.55	124.58 273.24	0.4432
56	1.5278	0.00093 0.0127	129.51 255.23	130.93 274.68	0.4622
60	1.6813	0.00094 0.0114	135.82 256.81	137.42 275.99	0.4814
70	2.1162	0.00100 0.0086	152.22 260.15	154.34 278.43	0.5302
80	2.6324	0.00107 0.0064	169.88 262.14	172.71 279.12	0.5814
90	3.2435	0.00119 0.0046	189.82 261.34	193.69 276.32	0.6380
100	3.9742	0.00154 0.0027	218.60 248.49	224.74 259.13	0.7196

Source: ASHRAE Transc. Vol. 94, (1988). pp. 2095-118.

Table B.2 Superheated Properties for R-134a

	p = 0.5 MPa (7	- sat = 18	5.74 C)		<i>p</i> = 0.60 MPa (T _{sat} =2 ⁻	1.58 C)		<i>p</i> = 0.70 MPa ($T_{sat} = 2$	6.72 C)	
	v	и	h	s	v	u	h	s	v	u	h	s
Sat.	0.04086	253.64	256.07	0.9117	0.0340{	238.74	259.19	0.9097	0.02918	241.42	261.85	0.9080
20	0.0418{	239.40	260.34	0.9264								
30	0.04416	248.20	270.28	0.9597	0.03581	246.41	267.89	0.9388	0.02979	244.51	265.37	0.9197
40	0.0463(256.99	280.16	0.9918	0.03774	255.45	278.09	0.9719	0.03157	253.83	275.93	0.9539
50	0.04841	265.83	290.04	1.0229	0.03958	264.48	288.23	1.0037	0.03324	263.08	286.35	0.9867
60	0.05040	274.73	299.95	1.0531	0.04134	273.54	298.35	1.0346	0.03482	272.31	296.69	1.0182
70	0.0524(283.72	309.92	1.0825	0.04304	282.66	308.48	1.0645	0.03634	281.57	307.01	1.0487
80	0.05432	292.80	319.96	1.1114	0.0446	291.86	318.67	1.0938	0.03781	290.88	317.35	1.0784
90	0.0562(302.00	330.10	1.1397	0.0463 ⁷	301.14	328.93	1.1225	0.03924	300.27	327.74	1.1074
100	0.0580{	311.31	340.33	1.1675	0.0479(310.53	339.27	1.1505	0.04064	309.74	338.19	1.1358
110	0.0598{	320.74	350.68	1.1949	0.04946	320.03	349.70	1.1781	0.04201	319.31	348.71	1.1637
120	0.06168	330.30	361.14	1.2218	0.0509	329.64	360.24	1.2053	0.0433	328.98	359.33	1.1910
130	0.06347	339.98	371.72	1.2484	0.05251	339.38	370.88	1.2320	0.04468	338.76	370.04	1.2179
140	0.06524	349.79	382.42	1.2746	0.05402	349.23	381.64	1.2584	0.04599	348.66	380.86	1.2444
150	1				0.0555(359.21	392.52	1.2844	0.04729	358.68	391.79	1.2706
160)				0.05698	369.32	403.51	1.3100	0.0485	368.82	402.82	1.2963
	p = 0.80) MPa ($T_{sat} = 3$	1.33 ⁰ C)	p = 0.90) MPa (T _{sat} = 3	5.53 ⁰ C	<i>p</i> = 1.0	0 MPa ($T_{sat} = 3$	9.33 ⁰ C
	v	и	h	s	v	u	h	s	v	и	h	s
Sat.	0.02541	243.78	264.15	0.9066	0.0225	245.88	266.18	0.9054	0.02020	247.77	267.97	0.9043
40	0.02691	252.13	273.66	0.9374	0.0232	250.32	271.25	0.9217	0.02029	248.39	268.68	0.9066
50	0.0284€	261.62	284.39	0.9711	0.02472	260.09	282.34	0.9566	0.0217	258.48	280.19	0.9428
60	0.02992	271.04	294.98	1.0034	0.0260	269.72	293.21	0.9897	0.0230	268.35	291.36	0.9768
70	0.0313	280.45	305.50	1.0345	0.02738	279.30	303.94	1.0214	0.02423	278.11	302.34	1.0093
80	0.03264	289.89	316.00	1.0647	0.02861	288.87	314.62	1.0521	0.02538	287.82	313.20	1.0405
90	0.03390	299.37	326.52	1.0940	0.0298(298.46	325.28	1.0819	0.02649	297.53	324.01	1.0707
100	0.0351	308.93	337.08	1.1227	0.0309	308.11	335.96	1.1109	0.0275	307.27	334.82	1.1000
110	0.03642	318.57	347.71	1.1508	0.03207	317.82	346.68	1.1392	0.02858	317.06	345.65	1.1286
120	0.03762	328.31	358.40	1.1784	0.0331€	327.62	357.47	1.1670	0.02959	326.93	356.52	1.1567
130	0.0388	338.14	369.19	1.2055	0.0342	337.52	368.33	1.1943	0.0305	336.88	367.46	1.1841
140	0.0399;	348.09	380.07	1.2321	0.0352	347.51	379.27	1.2211	0.0315	346.92	378.46	1.2111
150	0.0411:	358.15	391.05	1.2584	0.0363(357.61	390.31	1.2475	0.03250	357.06	389.56	1.2376
160	0.04225	368.32	402.14	1.2843	0.0373€	367.82	401.44	1.2735	0.0334	367.31	400.74	1.2638
170	0.04340	378.61	413.33	1.3098	0.03838	378.14	412.68	1.2992	0.0343	377.66	412.02	1.2895
180	0.04452	389.02	424.63	1.3351	0.0393§	388.57	424.02	1.3245	0.0352	388.12	423.40	1.3149
	p = 1.20) MPa ($T_{sat} = 4$	6.32 °C	<i>ρ</i> = 1.40) MPa ($T_{sat} = 5$	2.43 ⁰ C	<i>p</i> = 1.6	0 MPa (1	$T_{sat} = 5$	7.92 ⁰ C
_	V	u	h	s	v	u	h	s	v	и	h	s
Sat.	0.0166:	251.03	270.99	0.9023	0.0140{	253.74	273.40	0.9003	0.0120	256.00	275.33	0.8982
50	0.01712	254.98	275.52	0.9164								
60	0.0183	265.42	287.44	0.9527	0.0149	262.17	283.10	0.9297	0.0123	258.48	278.20	0.9069
/(0.0194.	275.59	298.96	0.9868	0.01600	272.87	295.31	0.9658	0.01340	269.89	291.33	0.9457
80	0.0205	285.62	310.24	1.0192	0.01701	283.29	307.10	0.9997	0.0143	280.78	303.74	0.9813
90	0.02150	295.59	321.39	1.0503	0.01792	293.55	318.63	1.0319	0.0152	291.39	315.72	1.0148
100	0.02244	305.54	332.47	1.0804	0.01878	303.73	330.02	1.0628	0.0160	301.84	327.46	1.0467
110	0.0233	315.50	343.52	1.1096	0.01960	313.88	341.32	1.0927	0.0167	312.20	339.04	1.0773
120	0.0242	325.51	354.58	1.1381	0.0203	324.05	352.59	1.1218	0.0175	322.53	350.53	1.1069
130	0.02508	335.58	365.68	1.1660	0.0211	334.25	363.86	1.1501	0.01820	. 332.87	361.99	1.1357
14(0.02592	345.73	3/6.83	1.1933	0.0218	344.50	375.15	1.1777	0.0188	343.24	373.44	1.1638
150	0.02674	355.95	388.04	1.2201	0.02262	354.82	386.49	1.2048	0.0195	353.66	384.91	1.1912
100	0.02754	300.27	399.33	1.2465	0.0233	365.22	397.89	1.2315	0.0201	364.15	396.43	1.2181
180	0.02834	3/6.69	410.70	1.2724	0.0240	375.71	409.36	1.2576	0.0208	. 374.71	407.99	1.2445
180	0.02912	387.21	422.16	1.2980	0.02472	386.29	420.90	1.2834	0.02142	385.35	419.62	1.2704
190)				0.02541	396.96	432.53	1.3088	0.02203	396.08	431.33	1.2960

Table B.3 Saturated Properties for Propane

	Pressure MPa	Vapor	Liquid	Enths	Enthalpy, kJ/ko		Entropy, kJ/(kg+K)		ea Liqu	Vapor	Liquid	1 Vapor Enth	alpy,	Enti	гору,
Temp. K		, Volume, m ³ /kg	Density kg/m ³	y, <u>KJ/</u> Liquid	Vapor	Liquid	Vapor	Temp, K	Pressure, MPa	Volume, m ³ /kg	Density, kg/m ³	KJ/	Vanor	kJ/(k	(g·K) Vanor
**85.4 90 95 100	7 0.30E-09 0.15E-08 0.75E-08 0.32E-07 0.12E-06	9 53716674. 8 11180892. 8 2362188. 7 585463. 5 166434	732.90 728.31 723.31 718.30 713.32	0 124.92 7 133.56 7 143.13 5 152.74 1 162.37	690.02 693.58 697.78 702.23 706.88	1.8738 1.9723 2.0758 2.1743 2.2682	8.3548 8.0953 7.8413 7.6163 7.4163	240 242 244 246 248	0.14800 0.16041 0.17361 0.18761	0.29049 0.26946 0.25028 0.23275 0.21672	570.19 567.80 565.41 562.99	442.07 446.72 451.40 456.10	860.07 862.45 864.83 867.21	3.9605 3.9798 3.9990 4.0182	5.7022 5.6977 5.6934 5.6894
110 115 120 125	0.39E-06 0.11E-05 0.31E-05 0.76E-05	5 53276. 18913. 7351.7 3095.9	708.32 703.29 698.25 693.20	2 172.03 9 181.73 5 191.46 0 201.23	711.71 716.68 721.78 726.98	2.3581 2.4443 2.5271 2.6069	7.2377 7.0778 6.9343 6.8051	250 252 254 256	0.21819 0.23483 0.25242 0.27098	0.21072 0.20202 0.18854 0.17614 0.16474	558.12 555.66 553.18 550.68	465.58 470.36 475.16 479.98	809.58 871.94 874.30 876.64 878.98	4.0373 4.0563 4.0753 4.0942 4.1130	5.6855 5.6817 5.6782 5.6748 5.6716
135 140 145 150	0.000018 0.000077 0.000149 0.000274 0.000484	674.08 343.54 184.22 103.41 60.504	683.07 677.99 672.90 667.79 662.66	211.03 7 220.88 9 230.77 0 240.70 9 250.67 5 260.70	737.64 743.07 748.57 754.12 759.72	2.6838 2.7581 2.8300 2.8997 2.9674 3.0331	6.5833 6.4881 6.4018 6.3237 6.2529	258 260 262 264 266 268	0.31118 0.33288 0.35569 0.37966 0.40482	0.13423 0.14453 0.13557 0.12727 0.11959 0.11247	548.16 545.62 543.06 540.48 537.88	484.82 489.70 494.60 499.52 504.47	881.30 883.62 885.93 888.22 890.50	4.1318 4.1505 4.1692 4.1878 4.2063	5.6655 5.6656 5.6628 5.6601 5.6576
160 165 170 175 180	0.000822 0.001347 0.002139 0.003297 0.004945	36.755 23.102 14.979 9.9919 6.8399	657.51 652.34 647.15 641.93 636.68	270.78 280.91 291.10 301.34 311.66	765.37 771.06 776.80 782.58 788.40	3.0971 3.1594 3.2202 3.2796 3.3377	6.1886 6.1304 6.0775 6.0296 5.9862	208 270 275 280 285 290	0.40482 0.43120 0.50276 0.58278 0.67186 0.77063	0.11247 0.10586 0.091279 0.079054 0.068737 0.059978	535.25 532.61 525.87 518.97 511.88 504.58	514.45 527.07 539.88 552.87 566.06	892.77 895.02 900.58 906.03 911.36 916.54	4.2248 4.2433 4.2893 4.3349 4.3804 4.3804 4.4257	5.6528 5.6475 5.6426 5.6383 5.6343
185 190 195 200 205	0.007238 0.010354 0.014506 0.019934 0.026912	4.7946 3.4347 2.5100 1.8681 1.4138	631.41 626.09 620.74 615.35 609.91	322.03 332.48 343.01 353.61 364.29	794.26 800.15 806.08 812.03 818.01	3.3946 3.4503 3.5049 3.5586 3.6113	5.9469 5.9114 5.8793 5.8502 5.8241	295 300 305 310 315	0.87971 0.99973 1.1314 1.2753 1.4321	0.052499 0.046079 0.040539 0.035735 0.031549	497.05 489.26 481.17 472.76 463.97	579.47 593.11 607.01 621.18 635.66	921.57 926.41 931.05 935.45 939.57	4.4709 4.5160 4.5611 4.6062 4.6516	5.6305 5.6270 5.6235 5.6200 5.6164
210 215 220 225 230	0.035741 0.046753 0.060307 0.076789 0.096607	1.0867 0.84713 0.66902 0.53470 0.43206	604.43 598.89 593.29 587.62 581.89	375.07 385.94 396.90 407.97 419.16	824.01 830.02 836.04 842.06 848.08	3.6631 3.7142 3.7645 3.8141 3.8631	5.8005 5.7793 5.7603 5.7433 5.7280	320 325 330 335 340	1.6027 1.7876 1.9876 2.2036 2.4362	0.027881 0.024653 0.021794 0.019247 0.016960	454.74 445.00 434.65 423.56 411.55	650.49 665.70 681.37 697.56 714.38	943.38 946.81 949.79 952.21 953.92	4.6971 4.7431 4.7896 4.8368 4.8850	5.6124 5.6080 5.6030 5.5969 5.5896
231.07 232 234 236 238	0.101325 0.10556 0.11515 0.12540 0.13634	0.41333 0.39788 0.36698 0.33899 0.31358	580.65 579.58 577.25 574.91 572.55	421.57 423.68 428.24 432.83 437.44	849.37 850.49 852.89 855.28 857.68	3.8735 3.8827 3.9022 3.9217 3.9412	5.7249 5.7224 5.7170 5.7118 5.7069	345 350 355 360 365	2.6866 2.9556 3.2445 3.5551 3.8902	0.014888 0.012985 0.011206 0.0094896 0.0077145	398.35 383.54 366.37 345.34 316.22	731.96 750.52 770.44 792.50 818.95	954.71 954.23 951.90 946.56 935.15	4.9346 4.9861 5.0405 5.0997 5.1699	5.5803 5.5681 5.5516 5.5277 5.4883
**Triple	noint				,			*369.80	4.2420	0.00457	219.	879.2	879.2	5.330	5.330
	Visco	sity, µPa∙:	s	Thermal Con	ductivity,	mW∕(m∙K	.)	Sp	pecific Hea	at, kJ/(kg·	K)		Velocit	y of Soun	d, m/s
Temp.,	Sat.	G Sat. 10	as at 1.325	Sat.	Sat.	Gas at 101.325	Sat. 1	Liquid	Sat.	Vapor	Gas at	0 Pa	Fat	Gas at Sat. 101.325	
K	Liquid	Vapor I	kPa	Liquid	Vapor	kPa	c _p	C _v	cp	c _v	c _p	c _v	Liquid	Sat. Vapor	kPa
150 160 170 180 190 200 210 220 231 240 250 240 250 260 270 280 290 300 310 320 330 340 350 360 369 96 ^b 370 380 380 380 380 380 380 380 38	661 554 467 397 327 298 265 236 207 205 186 169 153 140 129 110 93.4 82.3 71.9 61.6 51.7 40.1 28.8 -	4.25 4.50 4.74 4.99 5.25 5.80 6.09 6.39 6.42 6.70 7.02 7.38 7.78 8.22 9.78 8.70 9.22 9.78 10.4 11.7 12.5 10.4 11.7 12.5 10.4 11.7 10.4 11.7 10.4 11.7 10.4 11.7 10.4 11.7 10.4		190.9 182.9 174.6 166.3 158.2 150.3 142.8 135.7 128.9 128.2 122.5 116.5 110.8 105.5 100.4 95.5 90.8 86.3 81.9 77.5 73.3 69.4 66.4 ~ —	6.00 6.45 6.99 7.60 8.29 9.86 10.72 11.63 12.72 13.84 14.93 16.10 17.35 18.70 20.23 21.89 23.70 25.64 27.71 40.3 ∞		2.00 2.02 2.04 2.07 2.10 2.13 2.16 2.20 2.25 2.29 2.34 2.41 2.48 2.56 2.65 2.76 2.76 2.89 3.06 3.28 3.62 2.76 2.89 3.06 3.28 3.62 2.98 3.62 2.98 3.62 2.99 2.94 2.41 2.41 2.41 2.45 2.76 2.76 2.76 2.76 2.76 2.76 2.89 3.06 3.28 3.66 3.59 3.66 3.59 3.66 3.59 3.66 3.59 3.66 3.59 3.59 3.59 3.59 3.59 3.59 3.59 3.59	1.35 1.36 1.37 1.39 1.40 1.42 1.44 1.46 1.49 1.51 1.53 1.56 1.69 1.73 1.73 1.73 1.81 1.85 1.85 1.89 1.96 ∞	1.10 1.14 1.17 1.21 1.24 1.22 1.37 1.42 1.32 1.43 1.43 1.43 1.43 1.43 1.48 1.55 1.63 1.70 (1.8] 1.93 2.06 2.24 2.72 3.12 4.30 7.66 ∞ —	0.91 0.94 0.98 1.01 1.05 1.09 1.13 1.16 1.21 1.22 1.26 1.31 1.36 1.41 1.41 1.41 1.53 1.60 1.67 1.74 1.82 1.90 2.00 2.18 ∞	1.10 1.14 1.14 1.17 1.21 1.24 1.21 1.24 1.31 1.35 1.39 1.43 1.43 1.43 1.43 1.43 1.51 1.55 1.59 1.64 1.68 1.77 1.82 1.82 1.91 1.95 2.00 2.00 2.00 2.00	$\begin{array}{c} 0.91\\ 0.94\\ 0.98\\ 1.01\\ 1.05\\ 1.08\\ 1.12\\ 1.15\\ 1.19\\ 1.20\\ 1.24\\ 1.28\\ 1.32\\ 1.36\\ 1.41\\ 1.45\\ 1.49\\ 1.54\\ 1.58\\ 1.63\\ 1.67\\ 1.72\\ 1.76\\ 1.81\\ 1.81\\ 1.81\\ 1.81\\ 1.81\\ 1.85\\ 1.00\\ 1.90\\$	1649 1575 1575 1505 1436 1243 1370 1306 1243 1182 1125 11062 1003 944 1125 11062 1003 944 944 944 944 944 944 944 944 944 94	185 185 190 195 199 203 207 210 213 216 219 218 219 218 219 218 219 218 219 218 219 218 210 220 219 218 216 214 211 206 198 188 174 155 0	

^aNormal boiling point.

الم للاستشارات

8 | | | | 8 | | 1 ^bCritical point.

_i\

_____ ^cVery large.

ⁱLarge

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Ę

^eSmall.

Table B.4 Saturated Properties for Butane

Temp,	Pressure, MPa	Vapor Volume, m ³ /kg	Liquid Density,	Enthalpy, kJ/kg		Entro kJ/(kg	Entropy, kJ/(kg·K)		Pressure	Vapor Volume	Liquid Density	Enthalpy, kJ/kg		Entropy, kJ/(kg·K)	
<u> </u>			kg/m ³	Liquid	Vapor	Liquid	Vapor	apor K	MPa	m ³ /kg	kg/m ³	Liquid	Vapor	Liquid	Vanor
**134.86	6 0.67E-06	28631.	735.27	- 0.001	494.21	2.3056	5.9702	280	0.13297	0.28634	593 13	304.94	683.60	2 8220	5 1744
135	0.69E-06	27909.	735.14	0.270	494.37	2.3076	5.9676	282	0.14277	0.26791	590.94	309.64	686 47	2 0207	5.1750
140	0.17E-05	11635.	730.48	9.953	499.96	2.3778	5.8779	284	0.15311	0 25092	588 74	314 36	680.25	2.020/	5.1750
145	0.40E-05	5196.0	725.82	19.678	505.64	2.4460	5.7974	286	0.16403	0.23522	586 52	310.00	607.33	3.0332	5.170
150	0.87E-05	2468.0	721.15	29.444	511.39	2.5121	5.7251	288	0.17553	0.22071	584 20	172.05	605 11	3.0/10	5.1773
155	0.000018	1238.9	716.48	39.252	517.23	2.5764	5 6601	200	0.107/6	0.20720	509.05	545.05	095.11	3.0002	5.1115
160	0.000035	653.74	711.80	49.102	523.13	2.6389	5 6016	290	0.18/00	0.20/28	582.05	328.62	697.99	3.9046	<u>5.1783</u>
165	0.000065	360.83	707.11	58.997	529.11	2.6998	5 5490	292	0.20039	0.19484	579.79	333.41	700.87	3.9210	5.1794
170	0.000117	207.45	702.41	68.938	535.16	2.7592	5 5017	294	0.213/9	0.18330	577.52	338.22	703.75	3.9373	5.1806
175	0.000202	123.77	697.70	78.928	541.29	2.8172	5 4592	290	0.22/80	0.1/258	575.24	343.05	706.62	3.9536	5.1819
180	0.000337	76.368	692.98	88 969	547.48	2.0172	5 4011	298	0.24263	0.16261	572.93	347.90	709.49	3.9698	5.1832
185	0.000544	48.591	688.25	99.065	553 74	2.0750	5 2970	300	0.25811	0.15334	570.62	352.77	712.36	3,9860	5 1846
190	0.000853	31.797	683 50	109 22	560.07	2.9292	5 2561	305	0.30010	0.13284	564.75	365.05	719.53	4 0263	5 1885
195	0.001304	21.349	678 74	119.43	566 17	2.9055	5 2201	310	0.34706	0.11556	558.77	377.46	726.67	4 0663	5 1928
200	0.001944	14.675	673.96	129 71	572 93	3 0887	5 3048	315	0.39934	0.10094	552.67	390.01	733.77	4.1062	5 1975
205	0.002835	10 308	660 16	140.05	570 16	2 1200	5 2022	320	0.45731	0.088483	546.44	402.71	740.84	4.1458	5 2025
210	0.004048	7 3860	664 34	140.00	506 06	3.1398	5.2833	325	0 52133	0 077825	540.06	115 50	747 05	4 1054	6 2022
215	0.005672	5 3000	659 50	160.02	502 71	3.1900	5.2643	330	0 59179	0.068662	522 52	410.00	747.00	4.1804	3.2011
220	0.007808	4 0004	654 63	100.95	500 42	3.2394	5.24/0	335	0.66906	0.000002	526.82	420.01	754.00	4.2248	5.2132
225	0.010575	3 0158	640 74	182 12	599.42 606.20	3.2019	5.2331	340	0 75354	0.053881	510.02	441.04	769 40	4.2042	5.2189
230	0.014106	2 2065	611 01	102.12	(12.00	3.3337	5.2205	345	0.84563	0.033001	512.81	455.25	700.49	4.3033	5.2248
230	0.014100	2.3003	620.05	192.83	613.02	3.3828	5.2097	150	0.04670	0.047077	512.01	400.00	115.20	4.3428	5.2307
235	0.010555	1./0//	(14.05	· 203.02	619.90	3.4292	5.2006	330	0.943/3	0.042667	505.46	482.74	781.79	4.3822	5.2367
240	0.024083	1.4029	034.83	214.50	626.83	3.4749	5.1929	333	1.0543	0.038071	497.86	496.85	788.27	4.4217	5.2426
245	0.030002	0.90225	624.01	223.47	633.80	3.5201	5.1867	300	1.1/1/	0.034017	489.96	511.22	794.60	4.4613	5.2485
250	0.037133	0.09333	024./3	236.32	640.82	3.3647	5.1818	303	1.2984	0.030429	481.73	525.89	800.76	4.5012	5.2542
200	0.049112	0.72380	619.61	247.67	647.88	3.6087	5.1781	370	1.4350	0.02/238	4/3.11	540.88	806.72	4.5412	5.2597
200	0.000990	0.59183	614.43	258.92	654.97	3.6523	- 5.1755	375	1.5819	0.024388	464.07	556.21	812.43	4.5817	5 2649
202	0.000343	0.54/30	612.34	263.45	657.81	3.6696	5.1748	380	1.7396	0.021832	454.51	571.94	817.86	4.6225	5 2696
204	0.072033	0.30691	610.25	267.99	660.66	3.6868	5.1742	385	1.9088	0.019528	444.34	588.10	822.93	4.6638	5 2738
200	0.078148	0.4/005	608.15	272.55	663.52	3.7039	5.1737	390	2.0901	0.017438	433.43	604.76	827.56	4,7058	5 2771
200	0.064040	0.43041	606.03	277.13	666.38	3.7210	5.1734	395	2.2844	0.015530	421.61	621.97	831.63	4.7485	5 2793
270	0.091547	0.40566	603.91	281.72	669.24	3.7380	5,1732	400	2 4923	0 013773	408 60	620.95	924.05	4 7022	5.2000
272.64	0.101325	0.36906	601.09	287.80	673.02	3.7603	5.1732	405	2 7151	0.0131137	304.00	659.65	034.93	4./922	5.2800
274	0.10668	0.35175	599.63	290.96	674.98	3.7718	5.1733	410	2 9538	0.012137	377 00	678 20	03/.2/	4.85/5	5.2/86
2/6	0.11495	0.32808	597.47	295.60	677.85	3.7886	5.1736	415	3,2101	0.0000753	356 41	600 67	030.10	4.0042	5.2/40
2/8	0.12371	0.30634	595.31	300.26	680.72	3.8054	5.1739	420	3 4863	0.0075018	328.05	773.80	030.37 920 24	4.9342	5.2041
										0.00/0010	J40.0J	143.07	030.34	4.9903	3.243/

Refrigerant 600 (n-Butane) Properties of Saturated Liquid and Saturated Vapor

**Triple point

*Critical point

Figure B.1 Pressure-Enthalpy diagram for Propane

المتسارات

Figure B.2 Pressure-Enthalpy diagram for Butane

دراسة أداء ثلاجة تعمل بالطاقة الشمسية تستعمل مزيجا من غازي البروبان والبيوتان بنسب مختلفة لكل منهما كبديل لغاز التبريد

R-134a

إعداد

مروان يحيى بشير الضيافلة

المشرف

الأستاذ الدكتور محمود حماد

ملذ ص

يتناول هذا البحث فحص ودراسة أداء خليط من غازي البروبان والبيوتان بنسب مختلفة كغاز للتبريد بدلا من غاز R-134a في ثلاجة مستعملة دون تغيير أو تعديل على أجزائها وباستخدام الطاقة الكهربائية العادية والطاقة الكهربائية الناتجة من استغلال الطاقة الشمسية. لكل من غازي البروبان والبيوتان فوائد وأهمها أنهما متوفران محليا وبتكلفة قليلة ويمتلكان نفس الخصائص التي يتمتع بها غاز R-134a وأيضا هذان الغازان ليس لهما آثار جانبية عل طبقة الاوزون ولا يساهمان في مشكلة الاحتباس الحراري على العكس من غاز R-134a وبالتالي فهما رفيقان بالبيئة.

لتحديد كمية الغاز التي تعطي أفضل أداء, فقد تم وضع ستة كميات مختلفة من الغاز البترولي المسال في الثلاجة وأظهرت النتائج أن أفضل أداء كان عند استخدم 40 غرام من الغاز البترولي المسال وهو ما نسبته 57% من كمية الغاز الاصلي في الثلاجة, وتم اعتماد هذه الكمية لكل التجارب الأخرى.

www.manaraa.com

تم عمل مقارنات على أداء كل خليط وعلى مدى معين من درجات حرارة التبريد والتكثيف, حيث أظهرت النتائج أن هناك توفير في الطاقة بمقدار 7% عند استخدام الغاز البترولي المسال, واستهلاك أكثر للطاقة بمقدار 6% عند استعمال خليط مكون من 50% بروبان و50% بيوتان وكذلك استهلاك أكثر بما نسبته 9% عند استعمال خليط مكون من 70% بروبان و30% بيوتان وكان أكثر استهلاك للطاقة وهو 13% مقارنة بغاز R-134a في حالة استخدام البروبان لوحده.

بالمقارنة مع غاز R-134a وعلى درجة حراره تكثيف ثابتة فقد أعطى الغاز البترولي المسال كفاءة أكثر بنسبة 6% في حين أن خليط 50% بروبان و50% بيوتان أعطى كفاءة أقل بنسبة 10% وكذلك كفاءة أقل بنسبة 19% عند استعمال خليط 70% بروبان و30% بيوتان وأعطى البروبان كفاءة أقل بما نسبته 32%.

أظهرت النتائج أن الأداء عند استغلال الطاقة الكهربائية الناتجة عن الطاقة الشمسية كان قريبا جدا للأداء عند استخدام الطاقة الكهربائية العادية مع الأخذ بعين الاعتبار استمرارية توفر الطاقة فى حالة انقطاع الاشعاع الشمسى.

كذلك أظهرت النتائج أن الغاز البترولي المسال هو البديل الأفضل لغاز R-134a وأن النسب الأخرى ممكن استخدامها لتحل مكان غاز R-134a ولكن أدائها ليس مشجعا كما في حالة استخدام الغاز البترولي المسال.

للاستشارات